![]() |
|
|
#133 |
|
"Gary"
May 2007
Overland Park, KS
23·29·53 Posts |
My all twin prime search for k<1M is now complete to n=40K. The range of n=36.2K-40K was an unusually prolific twin range with something around 11-12 new twins found. The web pages are now updated. The links can be found earlier in this thread but for ease of reference, here they are:
k<1M for n>=10K k<100K for all n With a full quad running it now, progress is coming quickly. Processing is continuing for n=40K-44K. It's starting to take a little while now at an average of ~2.3 secs. per sieved candidate. Once I hit n=50K-51K, I'll have to start some sieving again. I'll post statuses every n=4K for a while now. With each core running an n=1K range, I believe it'll be close to a month to complete each 4K range. This will start to get exciting once I pass n=60K! ![]() Edit: 2 nice twins were found for n=36K-40K for k<100K. They are: 47553*2^36172-/+1 62601*2^36641-/+1 Gary Last fiddled with by gd_barnes on 2008-05-08 at 19:33 |
|
|
|
|
|
#134 |
|
Oct 2006
22·5·13 Posts |
Okay, I'll work on 6080<n<8825. I've done some work in the range of 40000->40015 or so, I'll post those results (no twins, though
). I think I've done most of them to around 5M. I'll also continue (on the side, so it won't be running often) the 50000ish range to ~1M each.
|
|
|
|
|
|
#135 |
|
Oct 2006
22×5×13 Posts |
8825->9500 is essentially finished now, just two stragglers...
I made an excel file for all n-values below 10000, with graphs for: lowest twins; deviation from the average twin value; jumping champions; and average twin k-value. I'm not quite sure I did the standard deviaion stuff right, but otherwise I'm happy with the way it turned out. Unfortunately, the file is way too big to post here (even zipped), so I put it on a storage site. Here's the address: http://www.freedrive.com/file/330738,twins.xlsx roger |
|
|
|
|
|
#136 |
|
Mar 2006
Germany
2·1,531 Posts |
better this link i think:
http://www.freedrive.com/file/330738/twins.xlsx |
|
|
|
|
|
#137 |
|
Oct 2006
4048 Posts |
Well, 8825<n<9500 is finally done (with a jumping champion of 271913295
at n=9195)!This smaller range is going so much faster !! Around half of the n's are spitting out twins at k-value<10M. 6000<n<7000 is around 17% done now. Code:
8825 53985 8826 68050017 8827 62526399 8828 25070475 8829 40797285 8830 28716597 8831 55779669 8832 43768917 8833 13080705 8834 15535215 8835 7794045 8836 69176283 8837 19902471 8838 6973995 8839 54964209 8840 10556637 8841 14364291 8842 61674003 8843 102743385 8844 62206893 8845 72528861 8846 32462637 8847 13249311 8848 20290683 8849 8245545 8850 51341295 8851 57979899 8852 51157893 8853 9294801 8854 76862715 8855 41153889 8856 78376587 8857 17023071 8858 57208053 8859 28559535 8860 6263727 8861 1819761 8862 2760147 8863 15861621 8864 36867495 8865 22249665 8866 96715725 8867 28349985 8868 5299593 8869 49815921 8870 3532437 8871 70049451 8872 115732857 8873 30914229 8874 1974807 8875 25387179 8876 75516627 8877 6480891 8878 35197605 8879 11031405 8880 242433 8881 20599371 8882 11318457 8883 7972659 8884 21252645 8885 25281399 8886 1404273 8887 34766199 8888 7747083 8889 31583361 8890 21548787 8891 11720871 8892 16413327 8893 22426509 8894 38121045 8895 12249135 8896 7666617 8897 28791399 8898 7845687 8899 944421 8900 88273875 8901 27186381 8902 16478265 8903 38443749 8904 44399673 8905 15437595 8906 8599755 8907 16837341 8908 10255575 8909 12679479 8910 30533703 8911 48760689 8912 64118523 8913 33378741 8914 1811763 8915 74246661 8916 30787923 8917 58302411 8918 12070233 8919 28396965 8920 10365747 8921 43713831 8922 2683713 8923 6123819 8924 21924405 8925 37286025 8926 13681743 8927 4214211 8928 9472125 8929 7934415 8930 32492685 8931 42495399 8932 5932227 8933 2011029 8934 18296385 8935 2827281 8936 4097097 8937 13373595 8938 1700697 8939 68637075 8940 5487213 8941 19555989 8942 53712705 8943 17376441 8944 6187785 8945 7577115 8946 2470923 8947 16263351 8948 22088157 8949 134662971 8950 50285937 8951 21287571 8952 47523375 8953 47098779 8954 48295785 8955 44058921 8956 77989953 8957 41319015 8958 132678933 8959 5625711 8960 27925995 8961 13636131 8962 3215205 8963 25938861 8964 80008803 8965 6910791 8966 10626903 8967 18874905 8968 77448747 8969 60906339 8970 12085047 8971 21217635 8972 21682065 8973 4806441 8974 11846247 8975 95641959 8976 56827773 8977 18670911 8978 40774563 8979 50962461 8980 75868785 8981 16251411 8982 14228925 8983 15479169 8984 23158425 8985 10723155 8986 1631253 8987 36551361 8988 8768595 8989 31560381 8990 36715743 8991 26454825 8992 10763403 8993 32534691 8994 42716307 8995 33068121 8996 19736307 8997 36551361 8998 41989563 8999 7648311 9000 16253883 9001 592479 9002 10951143 9003 11492205 9004 38527197 9005 48875571 9006 14868093 9007 9954831 9008 2240895 9009 91813215 9010 45590673 9011 22883445 9012 31992153 9013 48757191 9014 47065887 9015 7519305 9016 2613723 9017 5205801 9018 11990247 9019 1372041 9020 69731073 9021 81694809 9022 12887037 9023 26801589 9024 81288303 9025 31896549 9026 30210015 9027 3761655 9028 3665397 9029 54002805 9030 7493475 9031 13900965 9032 19887015 9033 3292251 9034 5245203 9035 24489429 9036 1817757 9037 36339585 9038 7865637 9039 54580041 9040 49249173 9041 11732139 9042 23580267 9043 21047025 9044 71641893 9045 28858821 9046 15229215 9047 54549369 9048 704847 9049 52586739 9050 35985345 9051 5539179 9052 8212623 9053 121248375 9054 26804535 9055 26258325 9056 6261093 9057 43713789 9058 6113115 9059 28706055 9060 8058393 9061 58503411 9062 47537343 9063 60421029 9064 21584955 9065 4551561 9066 45323805 9067 4636311 9068 56425155 9069 16870221 9070 18931113 9071 11150835 9072 10929747 9073 84384225 9074 9385047 9075 13590405 9076 19368603 9077 14365071 9078 31970487 9079 52709445 9080 15245733 9081 4864461 9082 26837475 9083 29197011 9084 25362087 9085 30817089 9086 5457057 9087 29617539 9088 11443185 9089 26654229 9090 32647095 9091 11573961 9092 5496333 9093 58067751 9094 57356067 9095 21730701 9096 47460483 9097 2862861 9098 644715 9099 30462201 9100 6643167 9101 29196465 9102 15289803 9103 14414331 9104 15780993 9105 15085161 9106 12435753 9107 1740669 9108 17755407 9109 9013839 9110 18944997 9111 47873199 9112 17486475 9113 54111429 9114 75054717 9115 17539509 9116 15045933 9117 1695969 9118 37124277 9119 9662631 9120 5335515 9121 40837125 9122 4543137 9123 25252491 9124 6799983 9125 70810419 9126 10165617 9127 9166821 9128 170299143 9129 25950045 9130 29105355 9131 6948861 9132 8504337 9133 80252391 9134 9768447 9135 4449315 9136 7557465 9137 6252015 9138 30580167 9139 13823145 9140 150852957 9141 3232581 9142 24157203 9143 1319991 9144 959823 9145 6096165 9146 16042293 9147 89227131 9148 3927897 9149 2017581 9150 37696305 9151 51244965 9152 9282447 9153 81896565 9154 61593 9155 26431101 9156 53101773 9157 9733491 9158 31696533 9159 18328959 9160 12496035 9161 63338895 9162 28536375 9163 17301741 9164 1594695 9165 3600441 9166 72167583 9167 41843859 9168 94229193 9169 18327525 9170 27264705 9171 26513805 9172 71519433 9173 29914125 9174 35436705 9175 38871219 9176 70540215 9177 8400369 9178 38414637 9179 94033005 9180 11187195 9181 10905375 9182 5438955 9183 17847921 9184 2651613 9185 75208245 9186 170246823 9187 13765929 9188 60807915 9189 18638835 9190 31037727 9191 19493331 9192 43254183 9193 7417671 9194 24573483 9195 271913295 9196 13554963 9197 3810561 9198 13499073 9199 7863585 9200 72427545 9201 19255149 9202 58890837 9203 87883425 9204 1596303 9205 287889 9206 31429257 9207 43082895 9208 43066395 9209 35906241 9210 23894085 9211 26291889 9212 18403953 9213 97510635 9214 67858245 9215 47137341 9216 16471695 9217 53918181 9218 4271757 9219 2457789 9220 32513517 9221 4533459 9222 29157513 9223 12134535 9224 85448133 9225 8238645 9226 13696923 9227 24691419 9228 81051393 9229 19580769 9230 4144365 9231 21547845 9232 12141453 9233 6338319 9234 29101137 9235 100092501 9236 20046447 9237 30071199 9238 19253955 9239 9216039 9240 43924107 9241 1943709 9242 17243415 9243 29016111 9244 18357255 9245 6451791 9246 7168443 9247 29394045 9248 64344993 9249 14067939 9250 30561435 9251 13843521 9252 6719745 9253 12926541 9254 60053493 9255 98411901 9256 829257 9257 465081 9258 705957 9259 840099 9260 10796073 9261 35913075 9262 16542183 9263 7404345 9264 20427117 9265 29404815 9266 12512475 9267 9923835 9268 7055025 9269 16536051 9270 21819495 9271 3125925 9272 15168297 9273 82121139 9274 38934933 9275 7064799 9276 35627865 9277 26106975 9278 8065077 9279 22332795 9280 3576687 9281 57753111 9282 11179287 9283 17315901 9284 5166195 9285 28271619 9286 48208005 9287 33553239 9288 2097405 9289 6964851 9290 62129865 9291 14019225 9292 1412775 9293 21915639 9294 6833523 9295 12444861 9296 50648247 9297 36981081 9298 61552983 9299 68284041 9300 3654957 9301 2969139 9302 23624427 9303 47249109 9304 19172817 9305 39419919 9306 208113 9307 12284481 9308 11940825 9309 48584295 9310 10044813 9311 11789679 9312 53130873 9313 92684529 9314 16936443 9315 53388195 9316 59556495 9317 27496941 9318 31932033 9319 540171 9320 18538275 9321 161022501 9322 1379355 9323 38652141 9324 6380187 9325 9230031 9326 42039855 9327 29266725 9328 51310737 9329 14189055 9330 35215983 9331 2939781 9332 27952953 9333 3980961 9334 54739977 9335 15801639 9336 21514173 9337 9262581 9338 9227583 9339 686361 9340 9329643 9341 11555145 9342 48276057 9343 38968509 9344 42627717 9345 14808381 9346 68426127 9347 175139721 9348 97519425 9349 6546141 9350 92369823 9351 103409919 9352 16733757 9353 52324821 9354 1847337 9355 48287175 9356 38278023 9357 60051135 9358 42600153 9359 6747975 9360 79407363 9361 5302899 9362 53088447 9363 21880611 9364 27633027 9365 99383931 9366 15791895 9367 17019639 9368 66339897 9369 164250075 9370 101410185 9371 9509361 9372 18420783 9373 17294181 9374 28687425 9375 28700985 9376 17812725 9377 25716495 9378 44931105 9379 7566159 9380 20296317 9381 40375305 9382 17790243 9383 95868585 9384 23210793 9385 90021885 9386 2251437 9387 21308709 9388 66802497 9389 13460979 9390 136147827 9391 1364679 9392 11434935 9393 2742009 9394 33407745 9395 39289575 9396 168694827 9397 20253171 9398 14997783 9399 41091285 9400 13935873 9401 9728085 9402 122754627 9403 59597001 9404 9473673 9405 1397181 9406 26015667 9407 38151459 9408 4927965 9409 10930689 9410 4798497 9411 50882571 9412 46543167 9413 48840441 9414 7770045 9415 72507591 9416 19887717 9417 3639465 9418 7209405 9419 52404381 9420 20564955 9421 10208505 9422 18655683 9423 98196525 9424 8701665 9425 12808869 9426 29678253 9427 7234575 9428 56349807 9429 17911779 9430 20313267 9431 52434591 9432 9584697 9433 19397511 9434 73169673 9435 52159965 9436 126249303 9437 1118205 9438 8415855 9439 42290625 9440 26674743 9441 71125395 9442 32745783 9443 15045285 9444 3928815 9445 28762659 9446 69414363 9447 5209419 9448 46894785 9449 43092741 9450 13129527 9451 42573321 9452 32957175 9453 72782301 9454 2261343 9455 50939829 9456 50578173 9457 23556771 9458 111220803 9459 25874949 9460 44284077 9461 2249541 9462 1124253 9463 331911 9464 34024803 9465 24801159 9466 67879203 9467 29531295 9468 20882607 9469 30305709 9470 7248423 9471 2464971 9472 35179485 9473 3314739 9474 28195767 9475 268689 9476 11377923 9477 11454345 9478 8751195 9479 23342745 9480 10482087 9481 4663239 9482 60449103 9483 18290391 9484 94493877 9485 23697531 9486 26357373 9487 79446585 9488 524997 9489 44920701 9490 18010767 9491 94409841 9492 89775147 9493 34001241 9494 13698195 9495 31982559 9496 199097823 9497 120923835 9498 2777523 9499 12099381 |
|
|
|
|
|
#138 | |
|
"Gary"
May 2007
Overland Park, KS
23·29·53 Posts |
Quote:
Roger, To avoid duplication of effort, I should let you know I'm searching all k<1M for n=10K-100K. My web pages shown earlier in the thread have all twins for k<1M for n<=40K. I am currently searching n=40K-44K, 1000n on each core of a quad. All cores are about half-done with their range now, i.e. core 1 has completed n=40K-40.5K, core 2 has completed n=41K-41.5K, etc. Estimated completion to n=44K is ~10 days. 4 twins have been found so far: 604329*2^40315-/+1 626937*2^41378-/+1 272139*2^42379-/+1 441201*2^43167-/+1 Based on this, you should be able to either find a twin for each n-value >10K on my page and if one is not found, start searching at k>1M. For each n-value <10K, you can look on my other page and if a twin is not found, start searching at k=100K. I didn't search n<10K for k=100K-1M since it would yield so many twins. Gary |
|
|
|
|
|
|
#139 |
|
Oct 2006
1000001002 Posts |
Thanks Gary, I've changed my .bat file accordingly. I haven't found any twins in that area, but I haven't been working on it much because of my assigned range (71% done 6080<n<7000!)
|
|
|
|
|
|
#140 |
|
Oct 2006
4048 Posts |
My first 10000+ digit twin: 3382575*234543+-1
Last fiddled with by roger on 2008-05-23 at 20:20 |
|
|
|
|
|
#141 |
|
Oct 2006
22×5×13 Posts |
Also: 4116765*225000+-1. 96% done 6000<n<7000.
|
|
|
|
|
|
#142 |
|
"Gary"
May 2007
Overland Park, KS
23×29×53 Posts |
My all twin prime search is complete for n=40K-44K. A total of 6 twins were found as follows:
604329*2^40315+/-1 626937*2^41378+/-1 358965*2^41653+/-1 272139*2^42379+/-1 816939*2^42771+/-1 441201*2^43167+/-1 The web pages have been updated. n=44K-48K testing has now started. Sieveing has also restarted from n=51K. Gary |
|
|
|
|
|
#143 |
|
I quite division it
"Chris"
Feb 2005
England
31·67 Posts |
It is possible to get NewPGen to sieve several n at a time (with k from 3 to 1,000,000 say) by using lots of memory:
http://mersenneforum.org/showpost.ph...68&postcount=6 By using 256Mb of RAM, 12 n can be sieved at a time. i.e. a deeper sieve and less LLRing. |
|
|
|
![]() |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve | mickfrancis | Factoring | 2 | 2016-05-06 08:13 |
| Relativistic Twins | davar55 | Science & Technology | 68 | 2015-01-20 21:01 |
| 3x*2^n-1 and 3x*2^n-1 possibly twins ? | science_man_88 | Riesel Prime Search | 10 | 2010-06-14 00:33 |
| The Twins | GP2 | Lounge | 1 | 2003-11-18 04:50 |
| NOT twins | graeme | Puzzles | 11 | 2003-09-04 00:41 |