![]() |
|
|
#1 |
|
11111111002 Posts |
Can anyone help confirm
prime number = (((2^2*2-1)^2*2-1)^2*2-1)... |
|
|
|
#2 |
|
Nov 2004
UK
468 Posts |
2^2*2-1 = 7 = prime
(2^2*2-1)^2*2-1 = 97 = prime ((2^2*2-1)^2*2-1)^2*2-1 = 18817 = composite (31 * 607) (((2^2*2-1)^2*2-1)^2*2-1)^2*2-1 = 708158977 = prime ((((2^2*2-1)^2*2-1)^2*2-1)^2*2-1)^2*2-1 = 1002978273411373057 = composite (127 * 7897466719774591) (((((2^2*2-1)^2*2-1)^2*2-1)^2*2-1)^2*2-1)^2*2-1 = 2011930833870518011412817828051050497 = composite (22783 * 265471 * 592897 * C21) Hmm, how deep did you want to go? |
|
|
|
|
|
#3 |
|
∂2ω=0
Sep 2002
República de California
22·2,939 Posts |
These are just the terms of the Lucas-Lehmer sequence S_0 = 4, S_n+1 = S_n^2 - 2, divided by 2. Here are the factorizations of the first few ('Cn' indicates an n-digit composite, 'PRPn' an n-digit probable prime):
Code:
S_1 = 2.7 S_2 = 2.97 S_3 = 2.31.607 S_4 = 2.708158977 S_5 = 2.127.7897466719774591 S_6 = 2.22783.265471.592897.2543310079.220600496383 S_7 = 2.113210499946729046527.71510428488234435849323250891975205208728978040847871 S_8 = 2.12289.665972737.3867637345756894712411491994657791.PRP100 S_9 = 2.1049179854847.27293256153178849431531258375109421840383.C241 S_10 = 2.C586 S_11 = 2.8191.4194619596652733275824127.PRP1143 Last fiddled with by ewmayer on 2005-12-05 at 20:58 |
|
|
|
|
|
#4 |
|
24·3·41 Posts |
Thank you for taking time, appreciate it!
Regards George Karl |
|
![]() |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| (M48) NEW MERSENNE PRIME! LARGEST PRIME NUMBER DISCOVERED! | dabaichi | News | 571 | 2020-10-26 11:02 |
| Number of distinct prime factors of a Double Mersenne number | aketilander | Operazione Doppi Mersennes | 1 | 2012-11-09 21:16 |
| Estimating the number of prime factors a number has | henryzz | Math | 7 | 2012-05-23 01:13 |
| New prime number? | inthevoid2 | Information & Answers | 3 | 2008-09-29 23:27 |
| When do I know if the number is prime? | uniqueidlondon | Software | 1 | 2003-05-17 16:57 |