![]() |
|
|
#1 |
|
Jun 2019
1000102 Posts |
Note that Every Even perfect numbers (except 6 ) are :
2p−1(2p − 1) = 1 Mod (9*p) but not necessarily alternately. p ======== perfect NUMBRE 3 ======== 28 =1 mod (27) 5 ======== 496 =1 mod (45) 7 ======== 8128 =1 mod (63) 13 ======== 33550336 =1 mod (117) 17 ======== 8589869056 =1 mod (153) 19 ======== 137438691328 =1 mod (171) 31 ======== 2305843008139952128 =1 mod (279) is also work as primlity test : p ======== 2p−1(2p − 1) 15 ======== 536854528 = 28 mod (135) 21 ======== 2199022206976 = 28 mod (189) 35 ======== 590295810341525782528 = 118 mod (315) Last fiddled with by baih on 2019-08-14 at 13:28 |
|
|
|
|
|
#2 |
|
Feb 2017
Nowhere
13×17×29 Posts |
If p is prime, then 2p-1 == 1 (mod p) and 2p == 2 (mod p) so 2p-1(2p - 1) == 1*1 == 1 (mod p).
If p > 3, then p == 1 or 5 (mod 6). If p == 1 (mod 6) then 2p-1 == 1 (mod 9) and 2p - 1 == 1 (mod 9), so 2p-1(2p - 1) == 1*1 == 1 (mod 9). If p == 5 (mod 6) then 2p-1 == 7 (mod 9) and 2p - 1 == 4 (mod 9), so 2p-1(2p - 1) == 7*4 == 1 (mod 9). Another triumph for elementary number theory! |
|
|
|
|
|
#3 |
|
Jun 2019
428 Posts |
lol
|
|
|
|
![]() |
| Thread Tools | |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| A note on small factors of Fermat numbers | Dr Sardonicus | Number Theory Discussion Group | 1 | 2017-07-17 11:55 |
| odd-perfect numbers don't exist | Bill Bouris | Miscellaneous Math | 15 | 2011-05-08 15:22 |
| Odd Perfect Numbers | davar55 | Miscellaneous Math | 16 | 2011-01-29 01:53 |
| Perfect Numbers | MajUSAFRet | Math | 3 | 2003-12-13 03:55 |
| Odd Perfect Numbers | Zeta-Flux | Math | 1 | 2003-05-28 19:41 |