![]() |
|
|
#1 |
|
Jul 2018
508 Posts |
quadruplets analysis:
__________________________________ exp(-+0,5+21) 799902177 2174359553 Prime numbers: 65206481 Prime quadruplets: 28890 Elapsed time: 0.40 sec int(4*exp (21) / 21^4 )= 27124 < 28890 deviation:(27127-28890)/27124= % -6,5 negative: lower limit count! __________________________________ exp(-+0,5+22) 2174359553 5910522063 Prime numbers: 169221623 Prime quadruplets: 65506 Elapsed time: 1.30 sec int(exp(22) / 22^4 )= 61213 < 65506 deviation: (61213 - 65506) / 61213 = % -7,0 ___________________________________ exp(-+0,5+23) 5910522063 16066464720 Prime numbers: 440059184 Twin primes: 25182309 Prime triplets: 4723257 Prime quadruplets: 148557 Prime quintuplets: 31336 Prime sextuplets: 1171 Elapsed time: 3.82 sec int(4*exp(23)/(23^4)) = 139290 < 148557 deviation: (139290 - 148557) / 139290 = % -6,7 ___________________________________ exp(-+0,5+24) 16066464720 43673179097 Prime numbers: 1146515015 Prime quadruplets: 341304 Elapsed time: 11.68 sec int(4*exp(24)/(24^4)) = 319361 < 341304 deviation: (319361 - 341304) / 319361 = % -6,9 ___________________________________ exp(-+0,5 + 25) 43673179097 118716009132 Prime numbers: 2992276391 Prime quadruplets: 787283 Elapsed time: 40.63 sec int(4*exp(25)/(25^4)) = 737330 < 787283 deviation: (737330 - 787283) / 737330 = % -6,8 ___________________________________ exp(-+0,5 + 26) 118716009132 322703570371 Prime numbers: 7821928491 Prime quadruplets: 1834796 Elapsed time: 126.90 sec int(4*exp(26)/(26^4)) = 1713259 < 1834796 deviation: (1713259 - 1834796) / 1713259 = % -7,09 ___________________________________ exp(-+0,5 + 27) 322703570371 877199251318 Prime numbers: 20476919479 Prime quadruplets: 4284690 Elapsed time: 372.68 sec int(4*exp(27)/(27^4)) = 4004570 < 4284690 deviation: (4004570 - 4284690) / 4004570 = % -6,9950 ___________________________________ exp(-+0,5 + 28) 877199251318 2384474784797 Prime numbers: 53679503762 Prime quadruplets: 10069640 Elapsed time: 1106.61 sec int(4*exp(28)/(28^4)) = 9411814 < 10069640 deviation: (9411814 - 10069640) / 9411814 = % -6,989 ___________________________________ exp(-+0,5 + 29) 2384474784797 6481674477934 Prime numbers: 140897751078 Prime quadruplets: 23801213 Elapsed time: 3879.80 sec _________________________________ 0 to exp(31+0,5) 0 47893456332462 0 to exp (31,5) Prime numbers: 1572095341867 Prime quadruplets: 232653982 _________________________________ exp(32-+0,5) exp(31,5) to exp(32,5) Prime numbers: 2565328558735 Prime quadruplets: 322735035 0 to exp(31,5) prime count < exp(32-+0,5) prime count! 0 to exp(31,5) quadruplets count < exp(32-+0,5) quadruplets count! _________________________________ exp(33-+0,5) 130187912050633 353887435612260 Prime numbers: 6762467049487 Prime quadruplets: 775878111 __________________________ exp(34-+0,5) 353887435612260 961965785544776 Prime numbers: 17842861844016 Prime quadruplets: 1872127524 ________________________________ 0 to exp(33,5) quadruplets count (232653982+322735035+775878111=1331267128)< exp(34-+0,5) quadruplets count:1872127524 (every range quadruplets count ) > (2 to previous range cumulative count!) _________________________________ rough lower limit count quadruplets for range:exp(34-+0,5) int(4*exp (34) / (34^4) )= 1746452217 < 1872127524 deviation:(1746452217-1872127524)/1746452217= % -7,1 negative: lower limit count! _________ exp(37,777) -+ 500e9: 1 trillion 16 digit integer. 25487904036980675 25488904036980675 Prime numbers:26471172237 Prime quadruplets:2039480 Elapsed time:956.16 sec 16 minutes rough calc:int[4*(10^12)/((37,777)^4)]=1964039 < 2039480 :real count ____________ exp(44-+0.5) one computer time!>100 years but parellel more than 1e6 computer < 1 day and out of range exp(44,5) >2^64, but not problem, easily ok, if 128 bit computer near future. exp(44)-+(500e9): range:one trillion 20 digit integer. 12851599614359308275 12851600614359308275 Prime numbers:22727213027 Prime quadruplets:1105744 Elapsed time:8622.31 sec 2,5 hours rough calculation: range:10^12 logarithym natural of middle point of range=44 rough calculation:int(4*10^12/(44^4))=1067208 < real count Prime quadruplets:1105744 rough lower limit count! exp(N-+0,5) middle point, is not exp(N) of course! but near, and this calculation is very rough! _______ question: is it a regularity every range, N>13 and N is an integer or not integer, if range:exp(N-+0,5): real count > rough lower limit count? if is it every range true? answers: yes! than: infinity quadruplets are there! every quadruplets contain two twin prime: and so: infinty twin prime are there. any proof math? |
|
|
|
|
|
#2 |
|
Jul 2018
2816 Posts |
N>13, N is an integer or not!
every exp(N - + 0,5) range rough lower limit sextuplet prime count: int[16*(exp(N))/(N^6)] here: int[...]: for example: int[2,718]=2 ^: for example 10^4=10000 sextuplet math mean? if sextuplet first number>96 then every sextuplet first number p: (p-97) mod 210 = 0. allways! ((p-97)/210) mod 11 only 5 combination: 0,4,5,6,10, another mean: p mod 2310, simple code! ((p-97)/210) mod (11x13) only 35 combination. (another mean p mod 30030, simple code!) ((p-97)/210) mod (11x13x17) only 385 combination. ((p-97)/210) mod (11x13x17x19) only 5005 combination. ((p-97)/210) mod (11x13x17x19x23) only 85085 combination. .... any mean? 5,35,385,5005,85085,...? 5,5x7,5x7x11,x5x7x11x13,5x7x11x13x17,...? a beatifull regularity. this regularity only for sextuplet and contain pi=~3,14159653{5,6} Last fiddled with by hal1se on 2018-07-27 at 08:30 |
|
|
|
![]() |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| Mersenne Primes p which are in a set of twin primes is finite? | carpetpool | Miscellaneous Math | 4 | 2022-07-14 02:29 |
| Twin Primes | Computer Science & Computational Number Theory | 171 | 2013-05-14 02:57 | |
| Twin Primes | Hugh | Math | 64 | 2011-01-26 08:45 |
| twin primes! | sghodeif | Miscellaneous Math | 9 | 2006-07-19 03:22 |
| Twin primes in the 50,000 digit range? | Joshua2 | Math | 15 | 2005-06-11 18:46 |