mersenneforum.org  

Go Back   mersenneforum.org > Great Internet Mersenne Prime Search > Math

Reply
 
Thread Tools
Old 2014-07-23, 15:57   #45
R.D. Silverman
 
R.D. Silverman's Avatar
 
"Bob Silverman"
Nov 2003
North of Boston

5×17×89 Posts
Default

Quote:
Originally Posted by fivemack View Post
I have a fairly strong suspicion (though I suspect it would need Alan Baker-style techniques to prove it) that no such primes exist; indeed, that no numbers exist for which polcyclo(k,n) is a power of two for k>2, n>0.
Certainly for any given degree for the cyclotomic polynomial
there will be at most finitely many. (via Siegel's Thm)
R.D. Silverman is offline   Reply With Quote
Old 2014-07-23, 17:26   #46
CRGreathouse
 
CRGreathouse's Avatar
 
Aug 2006

22×3×499 Posts
Default

Quote:
Originally Posted by fivemack View Post
I have a fairly strong suspicion (though I suspect it would need Alan Baker-style techniques to prove it) that no such primes exist; indeed, that no numbers exist for which polcyclo(k,n) is a power of two for k>2, n>0.
I think you want n>1, else you have lots of examples.
CRGreathouse is offline   Reply With Quote
Old 2014-08-08, 20:05   #47
primus
 
Jul 2014
Montenegro

2·13 Posts
Default

Quote:
Originally Posted by R.D. Silverman View Post
Your post consists of unnecessary hype. As posted, it makes it appear
as if the content of the paper discusses PROVED results.

It should be titled:

CONJECTURED Primality Criteria for Specific Classes of Proth Numbers


Proth numbers are easy to prove prime anyway because the full factorization
of N-1 follows immediately from the form of the number.

Even if the above conjectures are true, they add very little to the practical art for proving Proth numbers are prime.
Conjectured Polynomial Time Primality Tests for Numbers of Special Forms
primus is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Pépin tests of Fermat numbers beyond F24 ewmayer Computer Science & Computational Number Theory 89 2023-06-02 22:21
Use Pepin's Tests for proving primality of Mersenne numbers ? T.Rex Math 12 2016-04-03 22:27
Proof of Primality Test for Fermat Numbers princeps Math 15 2012-04-02 21:49
The fastest primality test for Fermat numbers. Arkadiusz Math 6 2011-04-05 19:39
Two Primality tests for Fermat numbers T.Rex Math 2 2004-09-11 07:26

All times are UTC. The time now is 13:29.


Fri Jul 7 13:29:44 UTC 2023 up 323 days, 10:58, 0 users, load averages: 1.14, 1.28, 1.22

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔