![]() |
|
|
#1 |
|
100001000102 Posts |
Any estimate as to the run time (on a typical pc say)?
I was wondering about the 'loop count' for this hailstone sequence, and whether it'd be feasible to run such a program to test such a thing. |
|
|
|
#2 | |
|
"Forget I exist"
Jul 2009
Dartmouth NS
8,461 Posts |
Quote:
2^57885161-1 3*2^57885161-2 3*2^57885160-1 9*2^57885160-2 9*2^57885159-1 27*2^57885159-2 is the start by the looks of it. as for the run time I'm not sure since I did it in my head. Last fiddled with by science_man_88 on 2013-02-15 at 12:49 |
|
|
|
|
|
|
#3 |
|
Just call me Henry
"David"
Sep 2007
Liverpool (GMT/BST)
10111111111012 Posts |
|
|
|
|
|
|
#4 |
|
"Vincent"
Apr 2010
Over the rainbow
23×5×73 Posts |
( 3^57885161-1)/2, at least?
|
|
|
|
|
|
#5 |
|
Just call me Henry
"David"
Sep 2007
Liverpool (GMT/BST)
3×23×89 Posts |
|
|
|
|
|
|
#6 |
|
"Serge"
Mar 2008
San Diego, Calif.
32×7×163 Posts |
You could do another 50 (or a few thousand, if you want) steps, like this:
Code:
? n=lift(Mod(3,2^100)^57885161-1) %5 = 526113967643187600285488863586 ? for(i=1,50,if(n%2,n=(3*n+1)/2;print(n" =(3n+1)/2"),n/=2;print(n" =n/2"))) 263056983821593800142744431793 =n/2 394585475732390700214116647690 =(3n+1)/2 197292737866195350107058323845 =n/2 295939106799293025160587485768 =(3n+1)/2 147969553399646512580293742884 =n/2 73984776699823256290146871442 =n/2 36992388349911628145073435721 =n/2 55488582524867442217610153582 =(3n+1)/2 27744291262433721108805076791 =n/2 41616436893650581663207615187 =(3n+1)/2 62424655340475872494811422781 =(3n+1)/2 93636983010713808742217134172 =(3n+1)/2 46818491505356904371108567086 =n/2 23409245752678452185554283543 =n/2 35113868629017678278331425315 =(3n+1)/2 52670802943526517417497137973 =(3n+1)/2 79006204415289776126245706960 =(3n+1)/2 39503102207644888063122853480 =n/2 19751551103822444031561426740 =n/2 9875775551911222015780713370 =n/2 4937887775955611007890356685 =n/2 7406831663933416511835535028 =(3n+1)/2 3703415831966708255917767514 =n/2 1851707915983354127958883757 =n/2 2777561873975031191938325636 =(3n+1)/2 1388780936987515595969162818 =n/2 694390468493757797984581409 =n/2 1041585702740636696976872114 =(3n+1)/2 520792851370318348488436057 =n/2 781189277055477522732654086 =(3n+1)/2 390594638527738761366327043 =n/2 585891957791608142049490565 =(3n+1)/2 878837936687412213074235848 =(3n+1)/2 439418968343706106537117924 =n/2 219709484171853053268558962 =n/2 109854742085926526634279481 =n/2 164782113128889789951419222 =(3n+1)/2 82391056564444894975709611 =n/2 123586584846667342463564417 =(3n+1)/2 185379877270001013695346626 =(3n+1)/2 92689938635000506847673313 =n/2 139034907952500760271509970 =(3n+1)/2 69517453976250380135754985 =n/2 104276180964375570203632478 =(3n+1)/2 52138090482187785101816239 =n/2 78207135723281677652724359 =(3n+1)/2 117310703584922516479086539 =(3n+1)/2 175966055377383774718629809 =(3n+1)/2 263949083066075662077944714 =(3n+1)/2 131974541533037831038972357 =n/2 ... |
|
|
|
|
|
#7 |
|
Einyen
Dec 2003
Denmark
22·863 Posts |
Yeah after 2*57885161 = 115770322 iterations we get to 3^57885161-1:
ite1: 3^1 * 2^57885161 - 2 ite2: 3^1 * 2^57885160 - 1 ite3: 3^2 * 2^57885160 - 2 ite4: 3^2 * 2^57885159 - 1 ite5: 3^3 * 2^57885159 - 2 ite6: 3^3 * 2^57885158 - 1 . . . |
|
|
|
|
|
#8 |
|
Einyen
Dec 2003
Denmark
1101011111002 Posts |
Starting from 3^57885161-1 (27,618,241 digits) after 1,000,000 iterations the number is down to 27,576,443 digits.
|
|
|
|
![]() |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| Too few cycles error | cardmaker | Factoring | 4 | 2016-12-29 15:52 |
| Dependencies and cycles | Sleepy | Msieve | 18 | 2011-06-10 09:16 |
| Cheapest CPU cycles? | siegert81 | Hardware | 17 | 2010-12-27 18:00 |
| S_N cycles in LL done on composite M(p) | tichy | Math | 1 | 2010-12-23 16:47 |
| CPU cycles | Unregistered | Information & Answers | 0 | 2007-07-19 12:24 |