mersenneforum.org  

Go Back   mersenneforum.org > Fun Stuff > Puzzles

Reply
 
Thread Tools
Old 2013-01-07, 02:24   #1
davar55
 
davar55's Avatar
 
May 2004
New York City

3·17·83 Posts
Default Multiply Pandigital 2

What is the smallest positive integer n such that
both 2^n and 3^n are each singly pandigital, i.e.
contain all ten digits at least once? What about
doubly pandigital, i.e. contain each of all ten digits
at least twice? Care to try for three?

(Based on the "Multiply Pandigital" thread.)
davar55 is offline   Reply With Quote
Old 2013-01-07, 07:23   #2
LaurV
Romulan Interpreter
 
LaurV's Avatar
 
Jun 2011
Thailand

25×5×59 Posts
Default

You imagine people have nothing to do and waste their time with trifles?

Code:
(14:08:12) gp > pandig(n)=v=[0,0,0,0,0,0,0,0,0,0];while(n>0,v[n%10+1]++;n\=10);return(vecsort(v)[1])
%4 = (n)->v=[0,0,0,0,0,0,0,0,0,0];while(n>0,v[n%10+1]++;n\=10);return(vecsort(v)[1])
(14:09:32) gp > n=15; until(b>0&&d>0,print(n++", "a=2^n", "b=pandig(a)"   :   "c=3^n", "d=pandig(c)))
16, 65536, 0   :   43046721, 0
17, 131072, 0   :   129140163, 0
18, 262144, 0   :   387420489, 0
19, 524288, 0   :   1162261467, 0
20, 1048576, 0   :   3486784401, 0
21, 2097152, 0   :   10460353203, 0
22, 4194304, 0   :   31381059609, 0
23, 8388608, 0   :   94143178827, 0
24, 16777216, 0   :   282429536481, 0
25, 33554432, 0   :   847288609443, 0
26, 67108864, 0   :   2541865828329, 0
27, 134217728, 0   :   7625597484987, 0
28, 268435456, 0   :   22876792454961, 0
29, 536870912, 0   :   68630377364883, 0
30, 1073741824, 0   :   205891132094649, 0
31, 2147483648, 0   :   617673396283947, 0
32, 4294967296, 0   :   1853020188851841, 0
33, 8589934592, 0   :   5559060566555523, 0
34, 17179869184, 0   :   16677181699666569, 0
35, 34359738368, 0   :   50031545098999707, 0
36, 68719476736, 0   :   150094635296999121, 0
37, 137438953472, 0   :   450283905890997363, 0
38, 274877906944, 0   :   1350851717672992089, 0
39, 549755813888, 0   :   4052555153018976267, 1
40, 1099511627776, 0   :   12157665459056928801, 0
41, 2199023255552, 0   :   36472996377170786403, 0
42, 4398046511104, 0   :   109418989131512359209, 0
43, 8796093022208, 0   :   328256967394537077627, 0
44, 17592186044416, 0   :   984770902183611232881, 0
45, 35184372088832, 0   :   2954312706550833698643, 1
46, 70368744177664, 0   :   8862938119652501095929, 0
47, 140737488355328, 0   :   26588814358957503287787, 1
48, 281474976710656, 0   :   79766443076872509863361, 1
49, 562949953421312, 0   :   239299329230617529590083, 0
50, 1125899906842624, 0   :   717897987691852588770249, 0
51, 2251799813685248, 0   :   2153693963075557766310747, 0
52, 4503599627370496, 0   :   6461081889226673298932241, 0
53, 9007199254740992, 0   :   19383245667680019896796723, 1
54, 18014398509481984, 0   :   58149737003040059690390169, 0
55, 36028797018963968, 0   :   174449211009120179071170507, 0
56, 72057594037927936, 0   :   523347633027360537213511521, 0
57, 144115188075855872, 0   :   1570042899082081611640534563, 1
58, 288230376151711744, 0   :   4710128697246244834921603689, 0
59, 576460752303423488, 0   :   14130386091738734504764811067, 0
60, 1152921504606846976, 0   :   42391158275216203514294433201, 1
61, 2305843009213693952, 0   :   127173474825648610542883299603, 2
62, 4611686018427387904, 0   :   381520424476945831628649898809, 1
63, 9223372036854775808, 0   :   1144561273430837494885949696427, 1
64, 18446744073709551616, 0   :   3433683820292512484657849089281, 1
65, 36893488147419103232, 0   :   10301051460877537453973547267843, 1
66, 73786976294838206464, 0   :   30903154382632612361920641803529, 0
67, 147573952589676412928, 0   :   92709463147897837085761925410587, 2
68, 295147905179352825856, 1   :   278128389443693511257285776231761, 0
69, 590295810358705651712, 0   :   834385168331080533771857328695283, 1
70, 1180591620717411303424, 1   :   2503155504993241601315571986085849, 1

(14:10:07) gp > n=70; until(b>1&&d>1,print(n++", "a=2^n", "b=pandig(a)"   :   "c=3^n", "d=pandig(c)))
71, 2361183241434822606848, 0   :   7509466514979724803946715958257547, 1
72, 4722366482869645213696, 0   :   22528399544939174411840147874772641, 1
73, 9444732965739290427392, 0   :   67585198634817523235520443624317923, 1
74, 18889465931478580854784, 0   :   202755595904452569706561330872953769, 1
76, 75557863725914323419136, 0   :   1824800363140073127359051977856583921, 2
77, 151115727451828646838272, 0   :   5474401089420219382077155933569751763, 2
78, 302231454903657293676544, 0   :   16423203268260658146231467800709255289, 2
79, 604462909807314587353088, 1   :   49269609804781974438694403402127765867, 1
80, 1208925819614629174706176, 0   :   147808829414345923316083210206383297601, 1
...
<snip: uninteresting (0,0) lines were skipped, due to size limit of the post>
...
82, 4835703278458516698824704, 1   :   1330279464729113309844748891857449678409, 1
83, 9671406556917033397649408, 0   :   3990838394187339929534246675572349035227, 1
84, 19342813113834066795298816, 1   :   11972515182562019788602740026717047105681, 0
85, 38685626227668133590597632, 0   :   35917545547686059365808220080151141317043, 2
86, 77371252455336267181195264, 0   :   107752636643058178097424660240453423951129, 2
87, 154742504910672534362390528, 1   :   323257909929174534292273980721360271853387, 1
88, 309485009821345068724781056, 2   :   969773729787523602876821942164080815560161, 2

(14:15:13) gp > n=88; until(b>2&&d>2,print(n++", "a=2^n", "b=pandig(a)"   :   "c=3^n", "d=pandig(c)))
89, 618970019642690137449562112, 1   :   2909321189362570808630465826492242446680483, 1
90, 1237940039285380274899124224, 0   :   8727963568087712425891397479476727340041449, 2
...
92, 4951760157141521099596496896, 0   :   78551672112789411833022577315290546060373041, 2
93, 9903520314283042199192993792, 0   :   235655016338368235499067731945871638181119123, 2
94, 19807040628566084398385987584, 1   :   706965049015104706497203195837614914543357369, 1
95, 39614081257132168796771975168, 1   :   2120895147045314119491609587512844743630072107, 2
96, 79228162514264337593543950336, 1   :   6362685441135942358474828762538534230890216321, 2
97, 158456325028528675187087900672, 1   :   19088056323407827075424486287615602692670648963, 2
98, 316912650057057350374175801344, 1   :   57264168970223481226273458862846808078011946889, 2
99, 633825300114114700748351602688, 0   :   171792506910670443678820376588540424234035840667, 2
100, 1267650600228229401496703205376, 1   :   515377520732011331036461129765621272702107522001, 0
101, 2535301200456458802993406410752, 1   :   1546132562196033993109383389296863818106322566003, 0
102, 5070602400912917605986812821504, 0   :   4638397686588101979328150167890591454318967698009, 1
103, 10141204801825835211973625643008, 1   :   13915193059764305937984450503671774362956903094027, 1
104, 20282409603651670423947251286016, 2   :   41745579179292917813953351511015323088870709282081, 0
105, 40564819207303340847894502572032, 1   :   125236737537878753441860054533045969266612127846243, 2
106, 81129638414606681695789005144064, 1   :   375710212613636260325580163599137907799836383538729, 0
107, 162259276829213363391578010288128, 0   :   1127130637840908780976740490797413723399509150616187, 2
108, 324518553658426726783156020576256, 0   :   3381391913522726342930221472392241170198527451848561, 2
109, 649037107316853453566312041152512, 1   :   10144175740568179028790664417176723510595582355545683, 3
110, 1298074214633706907132624082305024, 1   :   30432527221704537086371993251530170531786747066637049, 2
111, 2596148429267413814265248164610048, 1   :   91297581665113611259115979754590511595360241199911147, 1
112, 5192296858534827628530496329220096, 1   :   273892744995340833777347939263771534786080723599733441, 2
113, 10384593717069655257060992658440192, 2   :   821678234986022501332043817791314604358242170799200323, 2
114, 20769187434139310514121985316880384, 2   :   2465034704958067503996131453373943813074726512397600969, 2
115, 41538374868278621028243970633760768, 1   :   7395104114874202511988394360121831439224179537192802907, 1
116, 83076749736557242056487941267521536, 2   :   22185312344622607535965183080365494317672538611578408721, 2
117, 166153499473114484112975882535043072, 2   :   66555937033867822607895549241096482953017615834735226163, 4
118, 332306998946228968225951765070086144, 2   :   199667811101603467823686647723289448859052847504205678489, 3
119, 664613997892457936451903530140172288, 3   :   599003433304810403471059943169868346577158542512617035467, 2
120, 1329227995784915872903807060280344576, 2   :   1797010299914431210413179829509605039731475627537851106401, 2
121, 2658455991569831745807614120560689152, 1   :   5391030899743293631239539488528815119194426882613553319203, 1
122, 5316911983139663491615228241121378304, 1   :   16173092699229880893718618465586445357583280647840659957609, 4
123, 10633823966279326983230456482242756608, 1   :   48519278097689642681155855396759336072749841943521979872827, 2
124, 21267647932558653966460912964485513216, 1   :   145557834293068928043467566190278008218249525830565939618481, 3
125, 42535295865117307932921825928971026432, 2   :   436673502879206784130402698570834024654748577491697818855443, 3
126, 85070591730234615865843651857942052864, 2   :   1310020508637620352391208095712502073964245732475093456566329, 2
127, 170141183460469231731687303715884105728, 1   :   3930061525912861057173624287137506221892737197425280369698987, 2
128, 340282366920938463463374607431768211456, 1   :   11790184577738583171520872861412518665678211592275841109096961, 2
129, 680564733841876926926749214863536422912, 1   :   35370553733215749514562618584237555997034634776827523327290883, 3
130, 1361129467683753853853498429727072845824, 1   :   106111661199647248543687855752712667991103904330482569981872649, 4
131, 2722258935367507707706996859454145691648, 2   :   318334983598941745631063567258138003973311712991447709945617947, 2
132, 5444517870735015415413993718908291383296, 1   :   955004950796825236893190701774414011919935138974343129836853841, 3
133, 10889035741470030830827987437816582766592, 3   :   2865014852390475710679572105323242035759805416923029389510561523, 4
(14:15:34) gp >

Last fiddled with by LaurV on 2013-01-07 at 07:28 Reason: syntax highlighting :P
LaurV is offline   Reply With Quote
Old 2013-01-07, 07:47   #3
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

941610 Posts
Default

He must have been right!
Batalov is offline   Reply With Quote
Old 2013-01-07, 20:23   #4
davar55
 
davar55's Avatar
 
May 2004
New York City

3·17·83 Posts
Default

Certainly don't want to trifle with this quick (very nice btw) solution to
the 1-ply 2-ply 3-ply pandigital problem. I was originally going to ask
not for 1, 2, and 3-ply but for 100-, 200-, and 300-ply pandigitals, but
now I see the problems scale easily that far.

I might have said 2^n-1 and 3^n-2 and all prime, but that's going
a bit too far, don't you think?

Last fiddled with by davar55 on 2013-01-07 at 21:03
davar55 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Multiply By Drawing Lines petrw1 Math 2 2014-05-20 06:13
Sequences using nine-digit pandigital numbers as start ChristianB Aliquot Sequences 16 2014-05-16 06:56
Multiply Pandigital davar55 Puzzles 18 2010-12-22 22:07
Multiply mgb Lounge 0 2008-07-28 12:54
Critical bug in Gnu MP FFT-multiply code ET_ Lounge 3 2004-03-11 16:24

All times are UTC. The time now is 22:15.

Thu May 6 22:15:17 UTC 2021 up 28 days, 16:56, 0 users, load averages: 2.29, 2.38, 2.21

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.