mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Miscellaneous Math

Reply
 
Thread Tools
Old 2011-02-26, 14:51   #45
Lee Yiyuan
 
Feb 2011
Singapore

5×7 Posts
Default

My Java Netbeans says that M131073 is prime. Someone verify for me please.
Lee Yiyuan is offline   Reply With Quote
Old 2011-02-26, 14:54   #46
TimSorbet
Account Deleted
 
TimSorbet's Avatar
 
"Tim Sorbera"
Aug 2006
San Antonio, TX USA

11·389 Posts
Default

Quote:
Originally Posted by Lee Yiyuan View Post
My Java Netbeans says that M131073 is prime. Someone verify for me please.
131073=3*43691
TimSorbet is offline   Reply With Quote
Old 2011-02-26, 15:06   #47
Lee Yiyuan
 
Feb 2011
Singapore

5×7 Posts
Default

Quote:
Originally Posted by Mini-Geek View Post
131073=3*43691
Thank you.
Lee Yiyuan is offline   Reply With Quote
Old 2011-02-26, 15:09   #48
Lee Yiyuan
 
Feb 2011
Singapore

5×7 Posts
Default

i recently saw this article:

http://en.wikipedia.org/wiki/Mersenne_conjectures

Can it be somehow utilized?
Lee Yiyuan is offline   Reply With Quote
Old 2011-02-26, 16:30   #49
science_man_88
 
science_man_88's Avatar
 
"Forget I exist"
Jul 2009
Dartmouth NS

846110 Posts
Default

CRG with what you know of Me(x) function what are the odds of this :

Code:
(12:21)>for(x=1,39,print1((Me(x)^x^2-1)%4))
100000200020002000000000000020200000000
(12:22)>for(x=1,39,print1((Me(x)^x^3-1)%4))
100000200020002000000000000020200000000
(12:22)>for(x=1,39,print1((Me(x)^x^4-1)%4))
100000200020002000000000000020200000000
(12:23)>for(x=1,39,print1((Me(x)^x^5-1)%4))
1000002000200020000000000000202
for anyone else Me is a Mersenne exponent function.
science_man_88 is offline   Reply With Quote
Old 2011-02-26, 16:42   #50
10metreh
 
10metreh's Avatar
 
Nov 2008

232210 Posts
Default

Quote:
Originally Posted by science_man_88 View Post
according to number freak the formula is f(x)=x^2+x+41 so f(40)= 40^2+40+41 = 1600 + 81 = 1681.
However, the formula in mart_r's post is 41+n(n-1) which is effectively the same sequence because n^2+n+41 = n(n+1)+41, but f(n) in mart_r's version is equal to f(n-1) in Euler's version. This explains the difference.

Last fiddled with by 10metreh on 2011-02-26 at 16:43
10metreh is offline   Reply With Quote
Old 2011-02-26, 17:36   #51
science_man_88
 
science_man_88's Avatar
 
"Forget I exist"
Jul 2009
Dartmouth NS

8,461 Posts
Default

Quote:
Originally Posted by 10metreh View Post
However, the formula in mart_r's post is 41+n(n-1) which is effectively the same sequence because n^2+n+41 = n(n+1)+41, but f(n) in mart_r's version is equal to f(n-1) in Euler's version. This explains the difference.
while you're having fun with that care to comment on any of my latest ideas ?
science_man_88 is offline   Reply With Quote
Old 2011-02-26, 19:21   #52
Uncwilly
6809 > 6502
 
Uncwilly's Avatar
 
"""""""""""""""""""
Aug 2003
101×103 Posts

254738 Posts
Default

Quote:
Originally Posted by Lee Yiyuan View Post
My Java Netbeans says that M131073 is prime. Someone verify for me please.
The exponent has to be prime before the Mersenne number can be prime. It is not even worth checking them otherwise.
Uncwilly is online now   Reply With Quote
Old 2011-02-26, 22:39   #53
wblipp
 
wblipp's Avatar
 
"William"
May 2003
Near Grandkid

94716 Posts
Default

Quote:
Originally Posted by Lee Yiyuan View Post
My Java Netbeans says that M131073 is prime. Someone verify for me please.
Quote:
Originally Posted by Uncwilly View Post
The exponent has to be prime before the Mersenne number can be prime. It is not even worth checking them otherwise.
In greater detail, because 131073 = 3 * 43691, we know that M131073 is divisible by M3 and M43691.
wblipp is offline   Reply With Quote
Old 2011-02-27, 02:04   #54
Lee Yiyuan
 
Feb 2011
Singapore

5×7 Posts
Default

In order for 2^p - 1 to be prime,

1) p must be prime.
2) floor[lg(p + or - 1) / lg2] must = ceiling[lg(p + or - 1) / lg2]
3) ( 2^p + 1)/3 must not be evenly divisible by 3 or 43.

Is this correct/incorrect?
Lee Yiyuan is offline   Reply With Quote
Old 2011-02-27, 03:11   #55
S34960zz
 
Feb 2011

22×13 Posts
Default

Quote:
Originally Posted by Lee Yiyuan View Post
My Java Netbeans says that M131073 is prime. Someone verify for me please.
As answered by Mini-Geek above, the exponent 131073 is divisible by 3.

This exponent can be checked easily, as its repeated sum-of-digits is divisible by 3.

1+3+1+0+7+3 = 15
1+5 = 6
6 is divisible by 3, thus 131073 is divisible by 3, thus M131073 is not prime.

See:
http://en.wikipedia.org/wiki/Divisibility_rule, and its sections:
http://en.wikipedia.org/wiki/Divisib...s_1.E2.80.9320
http://en.wikipedia.org/wiki/Divisib...isibility_by_3
http://en.wikipedia.org/wiki/Divisib...le#cite_note-0
The last link "cite_note-0" is an explanation of why the sum-of-digits method works for 3, and is the same mechanism used in Lucas-Lehmer testing.
(As a rank amateur in pure mathematics, I found this to be an interesting page. I have known about the divisibility rule for 3 since grade school, but not why it worked nor about the rules for the other numbers listed.)

See also:
http://primes.utm.edu/mersenne/index.html#known, referenced from
http://www.mersenne.org/ (under Results Queries in left margin).

Last fiddled with by S34960zz on 2011-02-27 at 03:23
S34960zz is offline   Reply With Quote
Reply



Similar Threads
Thread Thread Starter Forum Replies Last Post
Sophie-Germain primes as Mersenne exponents ProximaCentauri Miscellaneous Math 15 2014-12-25 14:26
compendium of formulas related with primes ? skan Miscellaneous Math 6 2012-12-14 12:56
recurrent formulas to obtain primes Unregistered Information & Answers 2 2011-01-14 17:19
Mersenne Wiki: Improving the mersenne primes web site by FOSS methods optim PrimeNet 13 2004-07-09 13:51
Smooth polynomial formulas to produce all primes Cyclamen Persicum Math 10 2003-03-29 07:08

All times are UTC. The time now is 04:18.


Fri Jul 7 04:18:58 UTC 2023 up 323 days, 1:47, 0 users, load averages: 2.00, 1.83, 1.58

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔