mersenneforum.org Odd perfect related road blocks
 Register FAQ Search Today's Posts Mark Forums Read

 2009-04-27, 14:59 #1 jchein1   May 2005 22·3·5 Posts Odd perfect related road blocks Hi everyone, Let N = p^a . M^2b (1) be a hypothetical odd perfect number, where M is a square free positive integer and p is a special prime. McDaniel & Hagis conjectured that (1) cannot be perfect in 1975. Very recently, Yamada obtained w(N) <= 4b^2 + 2b + 3. Currently, I am at the final stage of working on a paper, “On odd perfect numbers of the restriction form”. In particular, I extended several authors’ early results and proved Theorem 3. If 2b+1 < 307, then (1) is not perfect except possibly for 2b+1 = 223 and 263, the status are unknown. The following roadblocks I am unable to handle by myself: (223^223-1)/222 = 409989521094963541 x c504 (799)* (409989521094963541^223-1)/409989521094963540 = 223 x c3908 (91)* (263^263-1)/262 = c635 (390)* * The number of ECM curves had been done on a slow p4 machine. I need just one new factor for each case to get start. I have a strong lemma behind these computations. The success rate are very high. Please help to run a few more curves before I give it up. Thank you in advance. Joseph
 2009-04-27, 15:31 #2 fivemack (loop (#_fork))     Feb 2006 Cambridge, England 18EF16 Posts running 400@1e7 on (223^223-1)/222 - 3GHz core2quad, should be done in 24hrs
 2009-04-27, 17:07 #3 10metreh     Nov 2008 91216 Posts Joseph, what B1 did you run those curves at? 799 curves at 2e3 and 799 curves at 85e7 are very different. Last fiddled with by 10metreh on 2009-04-27 at 17:09
 2009-04-27, 17:29 #4 jchein1   May 2005 22·3·5 Posts 10metreh, B1=1000000; B2=100000000 thought out.
 2009-04-27, 18:05 #5 akruppa     "Nancy" Aug 2002 Alexandria 246710 Posts Code: GMP-ECM 6.2.2 [powered by GMP 4.2.2] [ECM] Input number is 516248411741053652960395436827184748862511084897217762377502456224434034905125137924170344817935259950122336045143611857718767322907901227815716686379048993059061293880332637345541505919991461453890752564114634126344482510018429339411453404018945223135514150808361721533790555293536168054669954400326445726459397674031089151949275304670267658219519452338937148157536845696413116321597300233800755589805409153772759906938559062238872755146500459248479273434482651553560892669682916122705541547341688298333 (504 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4043036099 Step 1 took 306607ms Step 2 took 85165ms ********** Factor found in step 2: 732015431059055717751235492242377 Found probable prime factor of 33 digits: 732015431059055717751235492242377 Probable prime cofactor 705242526095607743265080015446043565288921781655047840484558284291328531564590341367637762791851256618356201769489720787204653401286733113504973069246617786597912347415545251135754017216052618181483502140642004356227491391452122658079363329762199969689314612990739804247835329180329247391277716676467136053161808192042000194572041912529264878194985639190553535787689788524512585864887726978565143626021507789843474186488361271520382663964712249256974106542888249972522229 has 471 digits Edit: Joseph, does this factorization eliminate the need for a factor of the c3908? Alex Last fiddled with by akruppa on 2009-04-27 at 18:44
 2009-04-27, 18:32 #6 akruppa     "Nancy" Aug 2002 Alexandria 2,467 Posts Code: GMP-ECM 6.2.2 [powered by GMP 4.2.2] [ECM] Input number is 10716687368549018763740766506156506210258720260361522976235281809991866675453511641941877971732815612425931418096560363916650395026494923817878808981644077124831733080607830496084459730811248459458809938061278635828036996709266949994249238660612006442892763114415523986136910959825342131482035732214847552279872032608309088871277760116183140576076405209606427639522415327860343074193151553224581206865415499279836545612188527758163390670461804030245602097217998369545727008825559419609534995028936152073821515552054373971674463659739536023484640994632430989874744157022140915107522171188810384994208526721910844176965299080779105345833 (635 digits) Using B1=11000000, B2=30114149530, polynomial Dickson(12), sigma=676488604 Step 1 took 434099ms Step 2 took 102078ms Run 2 out of 10: Using B1=11000000, B2=30114149530, polynomial Dickson(12), sigma=3642451195 Step 1 took 435359ms Step 2 took 101815ms ********** Factor found in step 2: 3093592597970782253540981763792599633 Found probable prime factor of 37 digits: 3093592597970782253540981763792599633 Composite cofactor 3464156002822913916063660191851471370127924830180980072575319609465988064813804938061767992166652802325198608123611745155961838583846626169879413691616138488070021910893441777559812804188117618614976035473361505284305848039144209462534567391381069030417263236555017059390036151051159299619744603965192875096582495854908362416008344062873833282528070708156069981956230502781145912421297734891349518307027267176149202405445938495032461016522135616055774232266050676680601573518083809447182067462176727957674008757780774275442811880728643475987020419319376534912042270667918555186435478946766938221401 has 598 digits I guess this is my lucky day. Alex
2009-04-27, 18:56   #7
10metreh

Nov 2008

2·33·43 Posts

Quote:
 Originally Posted by akruppa I guess this is my lucky day. Alex
Seems so! Wasn't that factor on the second curve? You are lucky

Last fiddled with by 10metreh on 2009-04-27 at 18:56

 2009-04-27, 19:00 #8 akruppa     "Nancy" Aug 2002 Alexandria 2,467 Posts I ran on 10 cpus, so the factor of the c504 was found among the first 10 curves, the factor of the c635 among the first 20. Alex
2009-04-27, 19:08   #9
Andi47

Oct 2004
Austria

2·17·73 Posts

Quote:
 Originally Posted by akruppa Code: GMP-ECM 6.2.2 [powered by GMP 4.2.2] [ECM] Input number is 10716687368549018763740766506156506210258720260361522976235281809991866675453511641941877971732815612425931418096560363916650395026494923817878808981644077124831733080607830496084459730811248459458809938061278635828036996709266949994249238660612006442892763114415523986136910959825342131482035732214847552279872032608309088871277760116183140576076405209606427639522415327860343074193151553224581206865415499279836545612188527758163390670461804030245602097217998369545727008825559419609534995028936152073821515552054373971674463659739536023484640994632430989874744157022140915107522171188810384994208526721910844176965299080779105345833 (635 digits) Using B1=11000000, B2=30114149530, polynomial Dickson(12), sigma=676488604 Step 1 took 434099ms Step 2 took 102078ms Run 2 out of 10: Using B1=11000000, B2=30114149530, polynomial Dickson(12), sigma=3642451195 Step 1 took 435359ms Step 2 took 101815ms ********** Factor found in step 2: 3093592597970782253540981763792599633 Found probable prime factor of 37 digits: 3093592597970782253540981763792599633 Composite cofactor 3464156002822913916063660191851471370127924830180980072575319609465988064813804938061767992166652802325198608123611745155961838583846626169879413691616138488070021910893441777559812804188117618614976035473361505284305848039144209462534567391381069030417263236555017059390036151051159299619744603965192875096582495854908362416008344062873833282528070708156069981956230502781145912421297734891349518307027267176149202405445938495032461016522135616055774232266050676680601573518083809447182067462176727957674008757780774275442811880728643475987020419319376534912042270667918555186435478946766938221401 has 598 digits I guess this is my lucky day. Alex
Can you quickly run a dozen of curves on M1061 or F14?

Last fiddled with by Andi47 on 2009-04-27 at 19:09

2009-04-27, 20:03   #10
Jeff Gilchrist

Jun 2003

22×293 Posts

Quote:
 Originally Posted by akruppa I ran on 10 cpus, so the factor of the c504 was found among the first 10 curves, the factor of the c635 among the first 20.
The real question is, how come your are using an old version of your own software with an even older version of GMP?

 2009-04-27, 20:11 #11 akruppa     "Nancy" Aug 2002 Alexandria 2,467 Posts Those machines are a bit picky about which binaries they like, iirc I had to link some libraries statically and some others dynamically to get GMP-ECM to run at all, so I wasn't too keen on updating the binaries. But now that GMP 4.3.0 is out, it's worthwhile to do it. Alex

 Similar Threads Thread Thread Starter Forum Replies Last Post jchein1 Factoring 632 2011-11-14 15:14 Zeta-Flux Factoring 46 2009-04-24 22:03 schickel Forum Feedback 4 2009-04-01 03:27 ixfd64 Software 1 2008-03-10 08:30 moo Hardware 7 2005-12-13 02:20

All times are UTC. The time now is 00:28.

Tue Apr 13 00:28:59 UTC 2021 up 4 days, 19:09, 1 user, load averages: 2.89, 2.48, 2.44