mersenneforum.org  

Go Back   mersenneforum.org > Other Stuff > Archived Projects > Octoproth Search

 
 
Thread Tools
Old 2006-01-25, 09:41   #23
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

3·523 Posts
Default

Quote:
Originally Posted by grobie
question, I keep reading taking n's to full range. What is the full range
qrobie, the full range for n means that you calculate all dodecaproths for a given n. Because we are interested only for positive primes in this search, it means that the largest k value for every n is 2^n, because for this k it will be the first case that one of the form of the eight: 2^n-k=0.

So to complete the full range for n means that the [0,2^n] interval is examined for n. For example Kosmaj has completed 0T,200000T for n=60, but I hope I can complete the full range it means that I will do only [200000T,1152922T] interval for n=60, because 2^60=1152921504606846976>1152921T, so I've to choose 1152922T for upper bound.

Note that for every n you can choose also much larger values for kmax>2^n, because there is no error checking for this in the program, but the program is completely wrong for negative numbers because in the prp checking part I use prm, and not abs(prm), it means that this isn't a 3-prp checking routine for negative numbers!
R. Gerbicz is offline  
Old 2006-01-25, 12:31   #24
Greenbank
 
Greenbank's Avatar
 
Jul 2005

2×193 Posts
Default

$ ../dodeca30 65 100000T 300000T
You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes )
n=65, kmin=100000T, kmax=300000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 12 primes to reduce the size of the sieve array
150841400071381635 65
187746339227937105 65
291458875432298805 65
146213957588533065 65
115946800921892325 65
192055957021304145 65
The sieving is complete.
Number of Prp tests=813413220
Time=45287 sec.
Greenbank is offline  
Old 2006-01-25, 15:09   #25
Greenbank
 
Greenbank's Avatar
 
Jul 2005

1100000102 Posts
Default

n=89 tested to 50000T with no luck. Releasing this n.
Greenbank is offline  
Old 2006-01-26, 22:48   #26
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,039 Posts
Default More 59

n=59, kmin=132000T, kmax=150000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
142529130061933545 59
132282301423013595 59
141488830544441835 59
148090090116026205 59
143879552732104665 59
147023762537574615 59
132186902335321155 59
142126704368917485 59
132302469931281195 59
146045286376440675 59
147985562126490795 59
The sieving is complete.
Number of Prp tests=469489294
Time=45070 sec.

n=59, kmin=150000T, kmax=170000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
166707487855539015 59
167873162917154625 59
161681335300835805 59
155665733687007705 59
162883979087041905 59
166284684987599955 59
The sieving is complete.
Number of Prp tests=521577011
Time=45559 sec.

Regards

Robert Smith
robert44444uk is offline  
Old 2006-01-28, 22:04   #27
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

3×523 Posts
Default

I've started the full range for n=60 yesterday, it'll take one more day to complete it, this is an easy task for my PC.
R. Gerbicz is offline  
Old 2006-01-30, 08:17   #28
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

3·523 Posts
Default Results for n=60

OK Here is the full report for n=60. I've started from 0T to check also previous results.
Unfortunately it is probably that there are other dodecaproths for this n because there was a system crash at over 90% I'll restart in future this n
n=60, kmin=0T, kmax=1152922T, version=4.0, here T=10^12
Starting the sieve...
Using the first 12 primes to reduce the size of the sieve array
1001243243456345505 60
390865756299178545 60
696222250051968255 60
87084056712267615 60
738135165061228935 60
596866586195208945 60
6584335653605325 60
746454911455013145 60
596897640498659115 60
51593298019338075 60
214805435087153295 60
708937872345663345 60
233884680348644325 60
844085783132336745 60
1047406954816697475 60
495749474272803135 60

Last fiddled with by R. Gerbicz on 2006-01-30 at 08:28
R. Gerbicz is offline  
Old 2006-01-30, 20:06   #29
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,039 Posts
Default More at 59

Herre are some more at 59. none have greater than 2 legs, left or right

n=59, kmin=170000T, kmax=190000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
185428250090913375 59
182640661231643685 59
172496379366280515 59
181163199885726765 59
189690430275071565 59
181741419442357635 59
186019783116235215 59
182357362166429835 59
180149412164216565 59
The sieving is complete.
Number of Prp tests=521442698
Time=44161 sec.
n=59, kmin=190000T, kmax=270000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 12 primes to reduce the size of the sieve array
233033443016869635 59
228893015441726475 59
197443996029682185 59
194758011980662515 59
235668551318655525 59
258242706173642715 59
236388702909963765 59
266420463433068105 59
219284219081729655 59
191204184229655835 59
259615993481342715 59
191493655070131575 59
251609145886816935 59
244307191930921665 59
194885473865908665 59
205267349649366165 59
229310754899550555 59
226483573020955635 59
259996147815358815 59
236806483657111515 59
215293780748584755 59
216897788823158205 59
230500222997723385 59
231123585640621275 59
257830865916383445 59
236778291047131995 59
261927378327181245 59
218256479646320115 59
250677775360766985 59
216846902874352065 59
244481747126464995 59
250158685432165965 59
265335088882943625 59
241358910131358705 59
213152690268596295 59
231363423962595855 59
197012851986176625 59
247770892379288985 59
230035385576106495 59
194245196176670415 59
226117288448881305 59
The sieving is complete.
Number of Prp tests=2085008465
Time=149491 sec.

n=59, kmin=270000T, kmax=290000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
285626630136356985 59
270908312736846015 59
283651732288501815 59
272413330495577565 59
274571581367031165 59
271919777626866075 59
271562193211725255 59
276507817610588655 59
276206181486896955 59
288480905427174075 59
275287292321672925 59
272386594525642905 59
289072044161168415 59
The sieving is complete.
Number of Prp tests=520893275
Time=43509 sec.
n=59, kmin=290000T, kmax=310000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
307068013093896915 59
308769200953475955 59
296449398277227195 59
300878393450210415 59
307166395861055115 59
The sieving is complete.
Number of Prp tests=520827938
Time=43546 sec.

Regards

Robert Smith
robert44444uk is offline  
Old 2006-02-08, 23:34   #30
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

7F716 Posts
Default 59 complete~!!!!!

Some more results, up to the limit

n=59, kmin=310000T, kmax=330000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
326003457156806205 59
326783285833491795 59
317647156792506765 59
329196642199085955 59
314479522892275965 59
322294412246537955 59
310875723565091685 59
The sieving is complete.
Number of Prp tests=520697886
Time=43529 sec.
n=59, kmin=330000T, kmax=350000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
340842929149728075 59
348912712470007455 59
349025248689447015 59
345848401963823535 59
347200185959647335 59
337152353606281815 59
342619249549964625 59
333159634113966135 59
The sieving is complete.
Number of Prp tests=520479472
Time=44983 sec.
n=59, kmin=350000T, kmax=360000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
359667765070203135 59
358067900498049525 59
354998739190598265 59
358293196150822695 59
The sieving is complete.
Number of Prp tests=260249023
Time=22537 sec.
n=59, kmin=360000T, kmax=400000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
364007465423421435 59
364421235188765895 59
396998477234361765 59
391801965283653015 59
378424390509233775 59
369965358773391675 59
385593836243225925 59
377625171727534185 59
382112117023853895 59
371451730045631235 59
361425321405852795 59
368896003896294945 59
398500949122195605 59
389591658367183125 59
386531511972345285 59
379140059389893585 59
393955701707552145 59
379101600529147335 59
377098236156617115 59
The sieving is complete.
Number of Prp tests=1040749584
Time=90189 sec.
n=59, kmin=400000T, kmax=420000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
411988613465524095 59
416549160133632435 59
408222898544399715 59
415863655107100725 59
414590902770750615 59
405510942301570035 59
413337217758434655 59
419901819845183445 59
411100055240436345 59
The sieving is complete.
Number of Prp tests=520277105
Time=44314 sec.
n=59, kmin=420000T, kmax=430000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
422446099960179225 59
422428079430344295 59
The sieving is complete.
Number of Prp tests=260066171
Time=22538 sec.
n=59, kmin=430000T, kmax=450000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
447462330516118155 59
442985423403853785 59
447771614808761565 59
446564853796383105 59
439513951495493805 59
442258021455951225 59
433395656028872775 59
432725195658322875 59
446341469513038785 59
438224385410606025 59
440892456667247445 59
439505398432233735 59
444511389954933525 59
448129705242637635 59
434837967104233455 59
430438104098792475 59
The sieving is complete.
Number of Prp tests=520137222
Time=44371 sec.
n=59, kmin=45000T, kmax=470000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 12 primes to reduce the size of the sieve array
n=59, kmin=45000T, kmax=47000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
n=59, kmin=450000T, kmax=470000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
450359095807403475 59
450464601930745185 59
464741515983850035 59
465517302388315485 59
455583343581934785 59
The sieving is complete.
Number of Prp tests=520025879
Time=45971 sec.
n=59, kmin=470000T, kmax=480000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
471740340158752665 59
476858702566465695 59
470074753649509785 59
474265706695613595 59
474877621726257225 59
470207204596640805 59
The sieving is complete.
Number of Prp tests=260002788
Time=23366 sec.
n=59, kmin=480000T, kmax=500000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
490757485419722745 59
492668865862516035 59
487553581636871295 59
493563401496748275 59
480568985067794385 59
498458183256781965 59
496210504750189005 59
490633126312987875 59
The sieving is complete.
Number of Prp tests=519981683
Time=43829 sec.
n=59, kmin=500000T, kmax=520000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
514110345199115805 59
511094727506311725 59
518245327094575395 59
502747020901725285 59
514770633475061565 59
500439392815716585 59
505986543766038195 59
512812241704312935 59
512034892293468705 59
513650837950280415 59
The sieving is complete.
Number of Prp tests=519908885
Time=48839 sec.
n=59, kmin=52000T, kmax=53000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 10 primes to reduce the size of the sieve array
n=59, kmin=520000T, kmax=530000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
520232265746971995 59
526408851201457455 59
The sieving is complete.
Number of Prp tests=259964498
Time=22279 sec.
n=59, kmin=530000T, kmax=550000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
536768491983263085 59
548848283202836925 59
549328432488351285 59
545540689522182585 59
537984421503724125 59
The sieving is complete.
Number of Prp tests=519837456
Time=43484 sec.
n=59, kmin=550000T, kmax=570000T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
566820069507957405 59
569727241031286555 59
559549403657868855 59
563701224098538435 59
568673534953655355 59
552334285186220775 59
552932990236674285 59
552487560908582985 59
554113906982310675 59
554036894540593065 59
564335879659426035 59
The sieving is complete.
Number of Prp tests=519947548
Time=43885 sec.
n=59, kmin=570000T, kmax=576461T, version=3.0, here T=10^12
Starting the sieve...
Using the first 11 primes to reduce the size of the sieve array
The sieving is complete.
Number of Prp tests=168066165
Time=15092 sec.

Regards

Robert Smith
robert44444uk is offline  
Old 2006-02-09, 00:33   #31
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

3·523 Posts
Default

Congratulation Robert!
It was a great work.
R. Gerbicz is offline  
 

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
15*2^n-1, n>1M Reservation Thread Kosmaj Riesel Prime Search 707 2021-11-20 19:13
5*2^n-1 Reservation Thread VBCurtis Riesel Prime Search 679 2021-10-09 17:33
LLR reservation thread (n=480K-500K) Oddball Twin Prime Search 33 2012-01-20 05:37
Octoproth Reservation Thread Greenbank Octoproth Search 2 2007-12-26 09:58
Hexadecaproth Reservation Thread (n=76) Greenbank Octoproth Search 0 2006-01-25 13:41

All times are UTC. The time now is 02:38.


Sun May 29 02:38:00 UTC 2022 up 45 days, 39 mins, 0 users, load averages: 1.25, 1.21, 1.20

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔