![]() |
![]() |
#12 | |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
23·439 Posts |
![]() Quote:
Code:
? m=20*q+1 ? ((2*m+1)*(10*m+1)*(16*m+1)-1)/(2*m) 64000*q^2 + 8520*q + 280 ? ((2*m+1)*(10*m+1)*(16*m+1)-1)/(10*m) 12800*q^2 + 1704*q + 56 ? ((2*m+1)*(10*m+1)*(16*m+1)-1)/(16*m) 8000*q^2 + 1065*q + 35 \\ --> all three divide |
|
![]() |
![]() |
![]() |
#13 |
Aug 2006
598810 Posts |
![]()
What does Václav Šimerka prove there, Serge?
|
![]() |
![]() |
![]() |
#14 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
1009710 Posts |
![]()
I don't read Czech, sadly, only numbers... but this fragment on page 224 seems interesting...
|
![]() |
![]() |
![]() |
#15 | ||
"Forget I exist"
Jul 2009
Dartmouth NS
22×72×43 Posts |
![]() Quote:
Quote:
|
||
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Devaraj numbers which act like Carmichael numbers | devarajkandadai | Number Theory Discussion Group | 1 | 2018-07-30 03:44 |
Carmichael numbers | devarajkandadai | Number Theory Discussion Group | 14 | 2017-11-15 15:00 |
Carmichael numbers and Devaraj numbers | devarajkandadai | Number Theory Discussion Group | 0 | 2017-07-09 05:07 |
Carmichael Numbers | Stan | Miscellaneous Math | 19 | 2014-01-02 21:43 |
Carmichael Numbers | devarajkandadai | Math | 0 | 2004-08-19 03:12 |