![]() |
![]() |
#1 |
Feb 2018
10111112 Posts |
![]()
for n= 76657.
Divider, Base, Pot, product 7, 10, 3, (7,6,6,5,7)*(81,27,9,3,1)= 7*115 47, 100, 6, (7,66,57)*(36,6,1)= 47*15 233, 1000, 68, (76,657)*(68,1)= 76*68+657*1= 233*25 Note Pot = Base mod Divider. Product is: the number on Base, MULTIPLIED BY, the powers of Pot. The rule is: (Divider | N) sii (Divider | Product) This rule is new. I think. JM M |
![]() |
![]() |
![]() |
#2 |
Dec 2012
The Netherlands
2·3·5·61 Posts |
![]() |
![]() |
![]() |
![]() |
#3 |
Feb 2018
10111112 Posts |
![]()
Not.
Is new. |
![]() |
![]() |
![]() |
#4 |
Feb 2018
5×19 Posts |
![]()
look some results:
NBP e divisor de Me --------------------------------------- e 11000113 div 66000679 e 11000113 div 1232012657 e 11000189 div 3762064639 e 11000293 div 1386036919 e 11000299 div 374010167 e 11000369 div 88002953 e 11000387 div 1606056503 e 11000401 div 66002407 e 11000401 div 176006417 e 11000603 div 22001207 e 11000651 div 22001303 ---------------------------------------------------- |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Sieve for divisibility sequences | carpetpool | carpetpool | 1 | 2022-02-08 05:20 |
Divisibility sequences based on recurrence relations | carpetpool | Combinatorics & Combinatorial Number Theory | 1 | 2017-12-21 00:42 |
Should I buy The Joy of Mathematics DVD from The Great Courses? | stathmk | Information & Answers | 14 | 2012-10-08 18:56 |
It Seems The Great Spider ... | Dubslow | Forum Feedback | 13 | 2012-06-01 13:39 |
The Great Rebate-Card ripoff | ewmayer | Lounge | 5 | 2009-09-30 01:46 |