mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > XYYXF Project

Reply
 
Thread Tools
Old 2019-09-20, 21:41   #287
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

25·3 Posts
Default

Another new PRP:
13952^17559+17559^13952, 72776 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-09-21, 21:46   #288
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

1408 Posts
Default

Another new PRP:
11699^17560+17560^11699, 71437 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-09-23, 12:11   #289
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

25·3 Posts
Default

Another new PRP:
16696^16957+16957^16696, 71603 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-09-26, 22:20   #290
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

25·3 Posts
Default

Another new PRP:
15813^16916+16916^15813, 71031 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-10-03, 20:34   #291
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

6016 Posts
Default

Another new PRP:
14742^16915+16915^14742, 70512 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-10-09, 21:00   #292
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

25·3 Posts
Default

Another new PRP:
15770^17589+17589^15770, 73836 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-10-12, 19:17   #293
pxp
 
pxp's Avatar
 
Sep 2010
Weston, Ontario

179 Posts
Default

Quote:
Originally Posted by pxp View Post
That makes L(40182,47) #1348 and advances the index to L(31870,131), #1354.
I have examined all Leyland numbers in the four gaps between L(31870,131) <67478>, #1354, and L(34684,105) <70103> and found 37 new primes. That makes L(34684,105) #1395.
pxp is offline   Reply With Quote
Old 2019-10-22, 00:07   #294
pxp
 
pxp's Avatar
 
Sep 2010
Weston, Ontario

2638 Posts
Default

Quote:
Originally Posted by pxp View Post
That makes L(34684,105) #1395.
I have examined all Leyland numbers in the four gaps between L(34684,105) <70103>, #1395, and L(29356,257) <70746> and found 4 new primes. That makes L(29356,257) #1403.
pxp is offline   Reply With Quote
Old 2019-10-30, 19:40   #295
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

6016 Posts
Default

Another new PRP:
1239^26228+26228^1239, 81126 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-11-02, 23:38   #296
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

25×3 Posts
Default

Another new PRP:
12352^18043+18043^12352, 73828 digits.
NorbSchneider is offline   Reply With Quote
Old 2019-11-06, 23:26   #297
NorbSchneider
 
NorbSchneider's Avatar
 
"Norbert"
Jul 2014
Budapest

1408 Posts
Default

Another new PRP:
15010^17699+17699^15010, 73918 digits.
NorbSchneider is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Leyland Primes: ECPP proofs Batalov XYYXF Project 16 2019-08-04 00:32
Mersenne Primes p which are in a set of twin primes is finite? carpetpool Miscellaneous Math 3 2017-08-10 13:47
Distribution of Mersenne primes before and after couples of primes found emily Math 34 2017-07-16 18:44
On Leyland Primes davar55 Puzzles 9 2016-03-15 20:55
possible primes (real primes & poss.prime products) troels munkner Miscellaneous Math 4 2006-06-02 08:35

All times are UTC. The time now is 09:08.

Fri Oct 23 09:08:09 UTC 2020 up 43 days, 6:19, 0 users, load averages: 2.55, 2.24, 1.85

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.