![]() |
![]() |
#45 |
May 2017
ITALY
2·32·29 Posts |
![]() |
![]() |
![]() |
![]() |
#46 |
Romulan Interpreter
"name field"
Jun 2011
Thailand
233518 Posts |
![]() |
![]() |
![]() |
![]() |
#47 |
May 2017
ITALY
2·32·29 Posts |
![]() |
![]() |
![]() |
![]() |
#48 |
May 2017
ITALY
2·32·29 Posts |
![]() |
![]() |
![]() |
![]() |
#49 |
May 2017
ITALY
10128 Posts |
![]()
The algorithm that I show you is in X with repetitions, if you want to apply the variant of log_2, you will have X * log_2 () with X without repetitions.
For Z we are interested if you admit solutions or not For others we must test whether the parent's product difference is the same but opposite sign from that of the child Example CHECK Z [1135793-2*a^2]=-Z , Z=-a*(a-n) , a^2+n*a=1135793 YES solution bad way , Z is positive [1135793-2*a^2]=Z , Z=-a*(a-n) , a^2+n*a=1135793 NO solution good way CHECK Q [1135793-2*a^2]=Z , Z=-a*(a-n), Z-2*(a)^2=-[a*[(a)-(-(a-n)-(a))]]=A , a^2+n*a=1135793 [1135793-2*a^2]=Z , Z=-a*(a-n), Z-2*(a-n)^2=-[(-(a-n))*[-(a-n)-(a-(-(a-n)))]]=B , a^2+n*a=1135793 [-[(a)-(-(a-n)-(a))]-a]=-((a-n)-(a)) , a^2+n*a=1135793 There are no solutions are different then Q = A -[a*[(a)-(-(a-n)-(a))]]=a*(-(3*a-n))=Q CHECK R Q-2*a^2=[a*(-(3*a-n))]-2*a^2=-[a*[a-(-(3*a-n)-a)]]=A , a^2+n*a=1135793 Q-2*(-(3*a-n))^2=-[(-(3*a-n))*[(-(3*a-n))-(a-(-(3*a-n)))]]=B , a^2+n*a=1135793 [-[a-(-(3*a-n)-a)]-a]=-[[(a)-(-(a-n)-(a))]-a] , a^2+n*a=1135793 There are no solutions are different then R = A -[a*[a-(-(3*a-n)-a)]]=a*(-5*a+n)=R CHECK T R-2*a^2=-[a*[a-((-5*a+n)-a)]]=A , a^2+n*a=1135793 R-2*(-5*a+n)^2=-[(-5*a+n)*[(-5*a+n)-(a-(-5*a+n))]]=B , a^2+n*a=1135793 [(-5*a+n)-a]=-[[a-((-5*a+n)-a)]-a] , a^2+n*a=1135793 TRUE they are the same, better to say they are opposite then T = B -[(-5*a+n)*[(-5*a+n)-(a-(-5*a+n))]]=(-5*a+n)*(-11*a+2*n)=T etc.etc. Does anyone confirm me the accuracy of the algorithm? |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Primality test based on factorization of n^2+n+1 | carpetpool | Miscellaneous Math | 5 | 2018-02-05 05:20 |
20th Test of primality and factorization of Lepore with Pythagorean triples | Alberico Lepore | Alberico Lepore | 43 | 2018-01-17 15:55 |
18th Test of primality and factorization of Lepore in 5 * log_25 (N) (New Year's algorithm) | Alberico Lepore | Alberico Lepore | 2 | 2018-01-01 21:31 |
Factorization and primality test O([log_9(N)]^3) | Alberico Lepore | Alberico Lepore | 26 | 2017-12-17 18:44 |
Lepore Factorization in O(k) Conjecture | Alberico Lepore | Alberico Lepore | 61 | 2017-09-23 21:52 |