20180226, 19:06  #1 
Feb 2018
96_{10} Posts 
A great universal divisibility rule
for n= 76657.
Divider, Base, Pot, product 7, 10, 3, (7,6,6,5,7)*(81,27,9,3,1)= 7*115 47, 100, 6, (7,66,57)*(36,6,1)= 47*15 233, 1000, 68, (76,657)*(68,1)= 76*68+657*1= 233*25 Note Pot = Base mod Divider. Product is: the number on Base, MULTIPLIED BY, the powers of Pot. The rule is: (Divider  N) sii (Divider  Product) This rule is new. I think. JM M 
20180226, 22:13  #2 
Dec 2012
The Netherlands
7×239 Posts 

20180227, 11:52  #3 
Feb 2018
2^{5}×3 Posts 
Not.
Is new. 
20180227, 16:11  #4 
Feb 2018
2^{5}×3 Posts 
look some results:
NBP e divisor de Me  e 11000113 div 66000679 e 11000113 div 1232012657 e 11000189 div 3762064639 e 11000293 div 1386036919 e 11000299 div 374010167 e 11000369 div 88002953 e 11000387 div 1606056503 e 11000401 div 66002407 e 11000401 div 176006417 e 11000603 div 22001207 e 11000651 div 22001303  
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Divisibility sequences based on recurrence relations  carpetpool  Combinatorics & Combinatorial Number Theory  1  20171221 00:42 
Sieve for divisibility sequences  carpetpool  Information & Answers  0  20171128 07:44 
Should I buy The Joy of Mathematics DVD from The Great Courses?  stathmk  Information & Answers  14  20121008 18:56 
It Seems The Great Spider ...  Dubslow  Forum Feedback  13  20120601 13:39 
The Great RebateCard ripoff  ewmayer  Lounge  5  20090930 01:46 