mersenneforum.org Factorization of M(738)
 Register FAQ Search Today's Posts Mark Forums Read

 2003-09-19, 17:08 #1 McBryce   Jun 2003 7 Posts Factorization of M(738) Hi, I look for the factorization of M(738)... factoredM.txt didn't help much. These are the factors I found: Code: 3^3*7*19*73*83*739*13367*18451*165313*174907*3887047*26309368807003 I think, it's really simple to find the other factors somewhere, but I couldn't manage to get them. Martin
 2003-09-19, 17:54 #2 Matthes     May 2003 1816 Posts Dario Alpern Site ( http://www.alpertron.com.ar/ECM.HTM ) gives me: 2^738 - 1 = 1 445895 146858 607358 437943 727208 769466 035893 202868 007692 637901 788601 699241 144933 631951 807447 549557 758449 099707 135121 406247 999127 995329 736165 184795 181305 316406 492567 598839 150653 733187 621116 264206 194563 768053 163279 547256 274943 = 3 ^ 3 x 7 x 19 x 73 x 83 x 739 x 13367 x 18451 x 165313 x 174907 x 3 887047 x 164 511353 x 8831 418697 x 26 309368 807003 x 6376 386802 464073 x 13194 317913 029593 x 177722 253954 175633 x 23 365041 083799 063007 245010 292408 927930 007906 086731 x 242 930150 369581 725249 341464 475421 249205 592384 370695 685937 My apologies for the format the number are presented in ... Hth, Matthes
2003-09-19, 19:32   #3
alpertron

Aug 2002
Buenos Aires, Argentina

22·3·113 Posts

Quote:
 Originally posted by Matthes 3 ^ 3 x 7 x 19 x 73 x 83 x 739 x 13367 x 18451 x 165313 x 174907 x 3 887047 x 164 511353 x 8831 418697 x 26 309368 807003 x 6376 386802 464073 x 13194 317913 029593 x 177722 253954 175633 x 23 365041 083799 063007 245010 292408 927930 007906 086731 x 242 930150 369581 725249 341464 475421 249205 592384 370695 685937 My apologies for the format the number are presented in ... Hth, Matthes [/B]
You can change this format by entering a number in the "Number of digits in a group" input box located below the applet. For example, using the number 60, I get:

3 ^ 3 x 7 x 19
x 73 x 83 x 739 x 13367 x 18451 x 165313 x 174907 x 3887047 x 164511353 x
8831418697 x 26309368807003 x 6376386802464073 x 13194317913029593 x
177722253954175633 x 23365041083799063007245010292408927930007906086731 x 242930150369581725249341464475421249205592384370695685937

Notice the my applet uses Will Edgington's data for numbers of the form 2^m +/- 1, and Brent's data for numbers of the form c^m +/- 1 where c > 2.

 Similar Threads Thread Thread Starter Forum Replies Last Post Robert Holmes Factoring 19 2010-11-08 18:46 kurtulmehtap Math 25 2010-09-12 14:13 dleclair NFSNET Discussion 1 2006-03-21 05:11 Wacky NFSNET Discussion 1 2006-03-20 23:43 Jeff Gilchrist NFSNET Discussion 7 2005-02-23 19:46

All times are UTC. The time now is 04:30.

Sun May 9 04:30:56 UTC 2021 up 30 days, 23:11, 0 users, load averages: 1.70, 1.77, 1.83