mersenneforum.org High weight k's
 Register FAQ Search Today's Posts Mark Forums Read

 2008-12-04, 09:38 #12 gd_barnes     May 2007 Kansas; USA 1037010 Posts I think a better question is: What is the LOWEST k with 150 primes for n < 1M ? That would be an interesting project to come up with an answer for.
 2008-12-04, 10:20 #13 kar_bon     Mar 2006 Germany 33·107 Posts i know these pages and some information about those large k's i put in the Riesel Database, too. see menu 'Related' and there 'Riesel Payam' with some data from R.Smith from the threads above. more to come (it's almoste in the ToDo-list)
2008-12-04, 10:52   #14
Thomas11

Feb 2003

22·32·53 Posts

Quote:
 Originally Posted by gd_barnes I think a better question is: What is the LOWEST k with 150 primes for n < 1M ? That would be an interesting project to come up with an answer for.
That would be indeed a quite interesting project!
Taking k=37850187375 (for which I would expect at least 160 primes for n<1M) as an upper bound, one could start a search similar to the RieselSieve project. And one could also consider the lowest k with 100, 110, 120, 130, 140 primes for n<1M.

Besides the results already reported in this thread, I have tested many more k of similar size during the last two years, but I'll need to dig out the results first.

Thomas

2008-12-04, 12:17   #15
kar_bon

Mar 2006
Germany

33·107 Posts

Quote:
 Originally Posted by Thomas11 Besides the results already reported in this thread, I have tested many more k of similar size during the last two years, but I'll need to dig out the results first.
would be great to get those results... many low primes and gaps to fill in!

another question:
which is the lowest n for the 100th primes of one k!?

R.Smith found a k with the 100th prime at n=5748!

 2009-05-07, 18:37 #16 kar_bon     Mar 2006 Germany 33·107 Posts from a PM from Beyond: k primes 17295: 401039, 425663, 450249 21285: 460289 21525: 457089 23985: 405135, 423144 25905: 411911, 431069, 452762 25935: - 26565: - 28635: 405294, 433376, 439304 30015: 419277, 459895 33885: - 36315: 406316, 408750, 419861 37785: 437348, 478576, 501239, 519716 37995: 435429, 439385, 492984, 516463 49335: 438617, 493906 53625: 406546, 406636, 407373, 471031, 510237 66285: 409646, 478138, 511745 78795: 441711, 511766 79635: 417024, 482295 92235: 424499, 429677, 509665, 514653, 517249 97305: 403134, 413658, 458767, 479568, 508188 all k's were tested in the range n=400k to 1000k Last fiddled with by kar_bon on 2009-05-07 at 18:39
 2009-05-16, 15:07 #17 cipher     Feb 2007 3238 Posts Reserving: 432383773965*2^n-1 LLR upto 90k 105 prime found. Weight 7788 100th prime 48611 3, 4, 6, 7, 10, 11, 12, 18, 19, 20, 23, 39, 47, 61, 64, 72, 73, 84, 93, 94, 109, 123, 127, 141, 145, 161, 163, 183, 223, 227, 232, 259, 321, 322, 326, 329, 337, 340, 349, 368, 426, 501, 551, 553, 801, 802, 890, 902, 928, 1067, 1106, 1379, 1444, 1499, 1557, 1698, 1774, 2207, 2426, 2606, 3142, 3313, 3622, 3773, 3789, 4103, 4482, 4573, 5445, 5551, 5616, 6188, 6408, 7532, 7593, 8072, 8365, 8571, 8878, 9133, 9870, 9972, 12569, 13543, 16515, 17635, 19586, 21595, 21784, 22184, 26754, 29867, 30984, 32862, 36069, 37967, 38113, 40197, 45654, 48611, 58245, 60161, 76559, 81679, 81833 p.s: Under Name "D. Zaveri" kar_bon: primes inserted Last fiddled with by kar_bon on 2009-05-16 at 16:19
 2009-05-18, 10:50 #18 cipher     Feb 2007 211 Posts All the Heavy weight Riesel K's i have searched upto n < 25k. All the K's are available if any one wants to search for it. Code:  K Nash Weight 233806014585 7749 922230671505 7652 632999772405 7574 411251572875 7573 684247473195 7570 20887630335 7559 244710177855 7553 52654604145 7547 107049976605 7545 719729835825 7541 817520317185 7517 634820379765 7507 867256822575 7505 211463471505 7504 623576482815 7499 452499626865 7484 515309928705 7473 916555048695 7471 593377534035 7469 20152491645 7452 401157619005 7451 282099222405 7449 918569975895 7445 659144838495 7444 399902446515 7442 988644530445 7440 17809160655 7438 799394775465 7432 632486829975 7430 407137926195 7430 919629850425 7429 978911562915 7422 7924279935 7420 640746319785 7418 875610945495 7413 535613417625 7407 513690569535 7406 455582987145 7401 188316750765 7397 826630363845 7390 171720581175 7388 457930131945 7387 596293211085 7380 34805003805 7380 453019171605 7378 285869793495 7376 644320696305 7374 804447563205 7373 973616175675 7372 702875382495 7372 817629051525 7370 292095707475 7368 401202694035 7364 46650333015 7363 646766472495 7357 219971811345 7357 954752904105 7356 307838300055 7356 405164118645 7355 192686746395 7354 404849858985 7353 891859393425 7352 841576608015 7352 31194316725 7351 532398371505 7349 440933284935 7349 327161536845 7349 67740637965 7348 989656232565 7347 567731536515 7346 178229643735 7346 572431729155 7339 946005182265 7338 983259572295 7336 508367314455 7336 776449465935 7334 603127254015 7334 507001043835 7334 147742947495 7334 563791343115 7333 475040239245 7331 958199811855 7329 222698320845 7329 553646445495 7328 452093453955 7328 868662299505 7326 327431008905 7326 855812492535 7322 866677694025 7321 630484618335 7321 155212360875 7321 121652900655 7321 823236858015 7320 627552785145 7320 246419198025 7320 191844014505 7319 779979093465 7315 357770987145 7315 134654479245 7315 Attach Primes1.txt contains Primes for all the Listed K's. (range n=1 to n =25k) Primes1.txt Sorry for sending you so much work Kar-Bon if you prefer it any other format please let me know. Thanks, D.zaveri a.k.a cipher
 2009-05-20, 01:15 #19 cipher     Feb 2007 211 Posts I ran through for all the small primes in primes1.txt Post #18. Here are the results of Twin primes that i found. Code: 1000000000:M:1:2:257 233806014585 848 922230671505 11 922230671505 59 632999772405 5 632999772405 10 632999772405 15 632999772405 48 632999772405 58 411251572875 2 411251572875 3 411251572875 15 411251572875 795 684247473195 20 684247473195 134 20887630335 1 20887630335 988 244710177855 54 52654604145 201 719729835825 25 719729835825 53 719729835825 475 817520317185 88 817520317185 144 867256822575 83 867256822575 125 211463471505 160 211463471505 1241 515309928705 63 916555048695 349 916555048695 367 593377534035 2 401157619005 41 282099222405 5 282099222405 12 282099222405 17 659144838495 33 399902446515 1 399902446515 3 399902446515 9 399902446515 21 399902446515 69 399902446515 246 988644530445 4 988644530445 36 17809160655 2 17809160655 59 17809160655 635 799394775465 13 799394775465 16 632486829975 3 632486829975 15 407137926195 14 407137926195 24 407137926195 29 407137926195 44 978911562915 2 978911562915 244 978911562915 271 978911562915 6781 7924279935 39 7924279935 40 7924279935 250 640746319785 13 875610945495 20 875610945495 671 535613417625 10 535613417625 290 513690569535 246 455582987145 14 455582987145 41 455582987145 127 188316750765 9 188316750765 17 188316750765 137 826630363845 47 171720581175 20 596293211085 28 596293211085 616 34805003805 15 34805003805 21 34805003805 24 34805003805 42 34805003805 69 34805003805 78 34805003805 414 453019171605 31 285869793495 25 644320696305 122 804447563205 67 973616175675 74 973616175675 204 292095707475 82 292095707475 91 292095707475 759 46650333015 52 646766472495 11 646766472495 89 219971811345 22 219971811345 76 219971811345 122 954752904105 2 954752904105 45 954752904105 123 307838300055 14 307838300055 85 405164118645 145 192686746395 29 192686746395 60 404849858985 9 404849858985 70 404849858985 199 891859393425 2 891859393425 72 841576608015 72 31194316725 7 31194316725 19 31194316725 30 31194316725 97 532398371505 245 327161536845 53 327161536845 350 67740637965 1 67740637965 38 67740637965 668 989656232565 155 989656232565 157 567731536515 8 567731536515 33 567731536515 69 567731536515 183 178229643735 21 178229643735 41 178229643735 75 572431729155 20 572431729155 23 572431729155 50 572431729155 76 946005182265 1238 508367314455 11 508367314455 82 508367314455 88 508367314455 1939 776449465935 483 603127254015 34 507001043835 5 147742947495 35 147742947495 44 147742947495 210 147742947495 221 147742947495 884 563791343115 3 563791343115 39 563791343115 155 563791343115 185 475040239245 1 475040239245 27 475040239245 211 958199811855 98 222698320845 6 222698320845 24 222698320845 75 222698320845 78 222698320845 95 222698320845 792 222698320845 16831 553646445495 18 452093453955 27 452093453955 68 868662299505 68 868662299505 84 327431008905 146 327431008905 551 866677694025 23 866677694025 54 866677694025 90 630484618335 48 630484618335 57 630484618335 2341 155212360875 15 823236858015 1 823236858015 12 823236858015 238 627552785145 463 246419198025 38 246419198025 108 246419198025 376 191844014505 122 779979093465 19 357770987145 16 357770987145 27 134654479245 11
2010-09-06, 09:19   #20
Merfighters

Mar 2010
On front of my laptop

7×17 Posts

Quote:
 Originally Posted by Thomas11 That would be indeed a quite interesting project! And one could also consider the lowest k with 100, 110, 120, 130, 140 primes for n<1M.
Here's the lowest known k with 100, 110, 120, 130, 140 primes for n<1M:
100 primes: k=465
110 primes: k=1125
120 primes: k=8331405
130 primes: k=8331405
140 primes: k=1581823815

Taking k=7924279935 from 302k to 1M.

 2011-02-01, 13:52 #21 Merfighters     Mar 2010 On front of my laptop 7·17 Posts k=7924279935 Tested up to n=332200 (100k digits) Found 4 primes: n=308630, 312620, 321886, 330805 (Overall 131 primes) kar_bon: updated Last fiddled with by kar_bon on 2011-02-01 at 22:49
 2011-07-21, 05:51 #22 Merfighters     Mar 2010 On front of my laptop 7×17 Posts k=7924279935, n=394k, no new primes, still testing

 Similar Threads Thread Thread Starter Forum Replies Last Post Kosmaj Riesel Prime Search 548 2021-05-08 02:30 Kosmaj Riesel Prime Search 456 2018-06-23 20:31 Thomas11 Riesel Prime Search 59 2015-04-20 14:05 f1pokerspeed Riesel Prime Search 4 2012-08-07 07:30 robert44444uk Riesel Prime Search 22 2007-12-18 20:27

All times are UTC. The time now is 21:02.

Sat May 15 21:02:58 UTC 2021 up 37 days, 15:43, 0 users, load averages: 2.64, 2.06, 2.04