 mersenneforum.org > Math square root modulo prime
 Register FAQ Search Today's Posts Mark Forums Read 2010-02-16, 13:32 #1 Raman Noodles   "Mr. Tuch" Dec 2007 Chennai, India 3×419 Posts square root modulo prime In the book of Crandall and Pomerance, it is given that For solving the equation x2=a (mod p) to find out x when a, p are being given, and then where p is a prime number. If p is of the prime 3 (mod 4) since a(p-1)/2 = 1 (mod p) a is always a quadratic residue mod p a(p+1)/2 = a (mod p) x = mod p = a(p+1)/4 x will always take two values, that sum up to p, but either result is OK, the other value can be quite easily calculated by using (p-x). If p is of form 5 (mod 8) a(p-1)/2 = 1 (mod p) a(p+3)/2 = a2 (mod p) a(p+3)/8 = either (mod p) or (mod p) since p is of form 1 (mod 4), if a is quadratic residue (mod p), so is (p-a) which is not the case at all if p is of form 3 (mod 4) Here that we don't want (mod p), if that case occurs, we multiply by (mod p) Since Legendre symbol (2/p) = (-1)(m[sup]2-1)/8[/sup], which is equal to -1 if p is of form 5 (mod 8), 2 is a quadratic non residue (mod p) in this case. 2(p-1)/2 = -1 (mod p) 2(p-1)/4 = (mod p) Thus is x2 = -a (mod p), then x := 2(p-1)/4x My clarification lies when p is of form 1 (mod 8) In the book it is given that to solve up the congruence x2 = a (mod p) such that a(p-1)/2 = 1 (mod p) Let (p-1) = 2st, where t is odd. The group order of a (mod p) is a divisor of 2st. Let d be a quadratic non-residue (mod p) with d(p-1)/2 = -1 (mod p) Let A = at (mod p), and then D = dt (mod p) Now that the group order of A (mod p) is a divisor of 2s-1, and then group order of D (mod p) is exactly equal to 2s only. With the powers of D in reverse, the group order of D-1 (mod p) is exactly 2s as well. In the book, it is given that solving for is a special case of the discrete logarithm problem, that we have within our hands is relatively simple. Thus, for some value , we have that (D-1)2 $$\mu$$ = A (mod p) = at (mod p) atD2 $$\mu$$ = 1 (mod p) at+1D2 $$\mu$$ = a (mod p) x = (mod p) = a(t+1)/2D$$\mu$$ (mod p) My questions (1) Since the group order of A (mod p) is a divisor of 2s-1 and then that group order of D-1 (mod p) is a exactly equal to 2s does it not imply that i.e. the power of D-1 which is equal to A is a power of 2? Why is it given within the book that for some value of we have that (2) Since the group order of A (mod p) is a divisor of 2s-1 The group order of D-1 (mod p) is a exactly equal to 2s The group order of D (mod p) is a exactly equal to 2s Shouldn't it be always true that and then also that ? Let me demonstrate this case with an example: For x2 = 491 (mod 1009) The group order of 491 (mod 1009) is 252. t = 63. Let d = 499. d need not be a primitive root at all, a quadratic non-residue is enough, right? The group order of d (mod 1009) is equal to 1008, only if d is a primitive root of (mod 1009). A = at (mod p) = 49163 (mod 1009) D = dt (mod p) = 49963 (mod 1009) D-1 = (4991007)63 (mod 1009) since we always have that D-1 (mod n) = D[TEX]\phi(n)[/TEX]-1 (mod n), and then that = n-1, when the case that n is prime. Now that the value of is equal to 4 (I doubt that it should be always a power of 2 only) A = 49163 (mod 1009) = 469 (mod 1009) D = 49963 (mod 1009) = 183 (mod 1009) D4 = 540 (mod 1009) D-1 = 49963441 (mod 1009) = 805 (mod 1009) (D-1)4 = 469 (mod 1009) Luckily enough, it is somehow true that Shouldn't it be always true that as well as that ? if the group order of both are same always? Is the latter being always true? I am becoming unsure of that case as well...   2010-02-16, 21:25 #2 Raman Noodles   "Mr. Tuch" Dec 2007 Chennai, India 3·419 Posts 3) Also since we have that p-1 = 2st, where t is odd. if p = 3 (mod 4), then s = 1 if p = 5 (mod 8), then s = 2 if p = 9 (mod 16), then s = 3 if p = 17 (mod 32), then s = 4, etc. Since a(p-1)/2 = 1 (mod p), since a is quadratic residue (mod p) a2[SUP]s-1t[/SUP] = 1 (mod p) Thus, either at = 1 (mod p) or a2[SUP]it[/SUP] = -1 (mod p) for some value of i between 0 & s-2. d2[SUP]s-1t[/SUP] = -1 (mod p) Group order of A = at (mod p) is a divisor of 2s-1 Group order of D = dt (mod p) is exactly equal to 2s Group order of A = at (mod p) = 2i+1 Thus, is it always true that if p = 3 (mod 4), then i = 1 if p = 5 (mod 8), then i = 2 if p = 9 (mod 16), then i = 3 if p = 17 (mod 32), then i = 4, etc. for solving up the equation such that if p = 2n-1+1 (mod 2n), then the value of is always equal to ...  Thread Tools Show Printable Version Email this Page Similar Threads Thread Thread Starter Forum Replies Last Post davar55 Lounge 0 2016-03-16 20:19 paul0 Factoring 10 2015-01-19 12:25 Damian Math 3 2010-01-01 01:56 Yamato Math 6 2008-02-25 15:08 davar55 Puzzles 3 2007-09-05 15:59

All times are UTC. The time now is 20:21.

Mon Sep 21 20:21:31 UTC 2020 up 11 days, 17:32, 1 user, load averages: 2.47, 2.61, 2.52