![]() |
![]() |
#1 |
Oct 2002
2316 Posts |
![]()
When someone posts a series and asks what number comes next, in theory there are an infinite number of answers. All you need to do is to come up with a polynomial of degree n+1 where n is the number of terms in the given series. The first n solutions to the polynomial matching the first n terms in the series. You can then have another solution to the polynomial that is any value you desire.
Of course, when someone posts a series, there is the implied requirement that the rule be the simplest one possible and a high degree polynomial is not very simple. With that in mind, what digits come next? (And why?) 3.141592... ![]() |
![]() |
![]() |
![]() |
#2 |
Nov 2002
7410 Posts |
![]()
I think the next numbers must be
3,141592653589793238462643383279502 because they are the digits of pi!! greetz andi314 :D |
![]() |
![]() |
![]() |
#3 | |
Oct 2002
2316 Posts |
![]() Quote:
The simplest solution is 355/113 So the series really continues: 3.141592920353982300884955752212... |
|
![]() |
![]() |
![]() |
#4 |
Jun 2003
The Texas Hill Country
32·112 Posts |
![]()
That all depends on your metric for simplicity.
Your expression is a quotient that requires 7 symbols. On many systems, I can express the other number with only one symbol. |
![]() |
![]() |
![]() |
#5 | |||
"Richard B. Woods"
Aug 2002
Wisconsin USA
22·3·641 Posts |
![]() Quote:
Pi has far more fundamental significance, and appears much more often in an immense variety of contexts, than 355/113. Quote:
But that's really a lazy answer which dodges sincere effort at using one's intelligence to determine the most logical or simplest continuation within the context of the problem. Quote:
Once one has learned about fitting polynomials to given points, one can trot out this answer automatically (or for humorous intent) in response to "continue the series" problems -- as my friends and I did when we were young -- but that doesn't make it the most intelligent answer in most contexts. |
|||
![]() |
![]() |
![]() |
#6 |
Sep 2002
24·3·17 Posts |
![]()
I'm definitely out of my league if people were doing these things when they were children and they always completely elude me.
|
![]() |
![]() |
![]() |
#7 |
"Richard B. Woods"
Aug 2002
Wisconsin USA
1E0C16 Posts |
![]()
Oh, don't be fooled by my photo! It's not recent! ;)
When I wrote "young" I meant "young adult". |
![]() |
![]() |
![]() |
#8 | ||
Bamboozled!
"๐บ๐๐ท๐ท๐ญ"
May 2003
Down not across
2C3716 Posts |
![]() Quote:
Ah, by "simplest" you mean the rational fraction with the smallest denomimator. Fair enough. There is at least a simple algorithm for determining it: the continued fraction expansion. Paul |
||
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Best 4XX series GPU | siegert81 | GPU Computing | 47 | 2011-10-14 00:49 |
Infinite series | Raman | Math | 6 | 2011-04-24 01:21 |
series of numbers | jasong | Puzzles | 3 | 2006-09-09 04:34 |
An interesting series | Citrix | Math | 0 | 2005-11-02 05:33 |
Series | Rosenfeld | Puzzles | 2 | 2003-07-01 17:41 |