20170828, 15:09  #1 
Oct 2011
492_{10} Posts 
Factordb and aliquot sequences with useless size terms
I recently worked on aliquot sequences with record size terms.
The works are visible on this page, but sorry, in french : http://www.aliquotes.com/suite_terme...le_record.html Brief explanations of the principle before my two questions about factordb : It is quite easy to calculate several hundred terms of a strictly increasing aliquot sequence, each of those terms has more than 10 ^ 7 digits. If p is a prime and M=2^p1 is a prime too (a Mersenne prime), N = 2^(p1) * M, and N is a perfect number. So we have an aliquot sequence which starts on the number : j0 = N * z0 = 2^(p1) * M * z0. PGCD(M,z0)=1 because z0<M and M prime. So, j1 = σ(j0)  j0 = σ(N * z0)  N * z0 = σ(N) * σ(z0)  N * z0 = 2 * N * σ(z0)  N * z0 = N (2 σ(z0)  z0) = N * z1. As long as zi <M we have PGCD(M,zi)=1 We note that z1 = 2 σ (z0)  z0 and that, more generally, we will have z i+1 = 2 σ (zi)  zi. We note that z i+1> zi as long as zi<M. If N has millions of digits, then the terms of the aliquot sequence have millions of digits. I have 2 questions about factordb. 1) Question 1. It is possible to enter this aliquot sequence on factordb : 0 : 2^520 * (2^5211) * 3 = 2^520 * (2^5211) * 3^1 1 : 2^520 * (2^5211) * 5 = 2^520 * (2^5211) * 5^1 2 : 2^520 * (2^5211) * 7 = 2^520 * (2^5211) * 7^1 3 : 2^520 * (2^5211) * 9 = 2^520 * (2^5211) * 3^2 4 : 2^520 * (2^5211) * 17 = 2^520 * (2^5211) * 17^1 5 : 2^520 * (2^5211) * 19 = 2^520 * (2^5211) * 19^1 6 : 2^520 * (2^5211) * 21 = 2^520 * (2^5211) * 3^1 * 7^1 7 : 2^520 * (2^5211) * 43 = 2^520 * (2^5211) * 43^1 8 : 2^520 * (2^5211) * 45 = 2^520 * (2^5211) * 3^2 * 5^1 9 : 2^520 * (2^5211) * 111 = 2^520 * (2^5211) * 3^1 * 37^1 10 : 2^520 * (2^5211) * 193 = 2^520 * (2^5211) * 193^1 But it is not possible to enter this aliquot sequence on factordb : 0 : 2^74207281 * (2^742072811) * 3 = 2^74207281 * (2^742072811) * 3^1 1 : 2^74207281 * (2^742072811) * 5 = 2^74207281 * (2^742072811) * 5^1 2 : 2^74207281 * (2^742072811) * 7 = 2^74207281 * (2^742072811) * 7^1 3 : 2^74207281 * (2^742072811) * 9 = 2^74207281 * (2^742072811) * 3^2 4 : 2^74207281 * (2^742072811) * 17 = 2^74207281 * (2^742072811) * 17^1 5 : 2^74207281 * (2^742072811) * 19 = 2^74207281 * (2^742072811) * 19^1 6 : 2^74207281 * (2^742072811) * 21 = 2^74207281 * (2^742072811) * 3^1 * 7^1 7 : 2^74207281 * (2^742072811) * 43 = 2^74207281 * (2^742072811) * 43^1 8 : 2^74207281 * (2^742072811) * 45 = 2^74207281 * (2^742072811) * 3^2 * 5^1 9 : 2^74207281 * (2^742072811) * 111 = 2^74207281 * (2^742072811) * 3^1 * 37^1 10 : 2^74207281 * (2^742072811) * 193 = 2^74207281 * (2^742072811) * 193^1 I suppose the numbers are too big for factordb and factordb does not seem to know the prime number of mersenne (2^742072811), that's right ? Aliquot sequences with more than 700 terms available here : http://www.aliquotes.com/parfait_521_3.txt And with terms with more than 44 millions digits (!!!) http://www.aliquotes.com/parfait_74207281_3.txt And on factordb, the limit (130100 digits) : http://factordb.com/sequences.php?se...20&fr=0&to=100 2) Question 2. If we look at the 3 previous aliquot sequences (2^520 * (2^5211) * 3 and 2^74207280 * (2^742072811) * 3 and 2^216090 * (2^2160911) * 3), we note that the sequence of the numbers zi are identical : only the perfect number N changes. If I enter the first aliquot sequence in factordb, (see here : http://factordb.com/sequences.php?se...20&fr=0&to=100), the database "knows" all the prime numbers of the decompositions of the cofactors zi. Then why if I enter another starting number in factordb, like 2 ^ 606 * (2 ^ 6071) * 3, the database does not indicate the terms of the aliquot sequence whith the same cofactors zi ? 
20170828, 17:43  #2 
Apr 2010
Over the rainbow
2·5·11·23 Posts 
The db has no idea of what a perfect number is, or what to do with it
Last fiddled with by firejuggler on 20170828 at 17:44 
20170829, 07:16  #3  
Oct 2011
492_{10} Posts 
Quote:
I assumed that it would be possible for db "to know" the Mersenne prime numbers in their "condensed" form. For example, in the form : 2 ^ 74207281  1 Instead of that form which is written with more than 44 million digits : 451129962706 ... 557930315776 And especially that db is not obliged to check again the primality of this huge number first already known and famous. But it must be very difficult to program things like that. 

20170829, 07:28  #4 
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
7221_{10} Posts 
The factordb doesn't know anything about the theory behind aliquot sequences, and in particular doesn't know anything about how perfect numbers with "small" cofactors all have the same cofactor sequence. All it knows is that there's a whole bunch of big numbers, and it doesn't try to factor or otherwise test the big numbers.

20170830, 08:04  #5 
Oct 2011
2^{2}·3·41 Posts 
OK, thank you for your answers !

20170830, 08:11  #6 
(loop (#_fork))
Feb 2006
Cambridge, England
2·3,191 Posts 
Given that the cofactors are the same whatever perfect number you're looking at (at least until you start getting the Mersenne prime as an accidental cofactor), why not compute the series of cofactors explicitly and just label the perfect number something symbolic?

20170830, 11:03  #7 
Oct 2011
2^{2}×3×41 Posts 
This is exactly what I did to get for example this aliquot sequence whose terms have more than 44677235 digits in base 10 :
http://www.aliquotes.com/parfait_74207281_3.txt My problem is that I can not inform the database factordb with this aliquot sequence because factordb does not know the "symbolic" representation of the large prime numbers of Mersenne. 
20170830, 11:47  #8  
"Forget I exist"
Jul 2009
Dumbassville
2^{6}×131 Posts 
Quote:


20170831, 19:03  #9  
Oct 2011
2^{2}·3·41 Posts 
Quote:
OK, thank you ! You are right, I tried with success for the 35th Mersenne prime. But no success for the 36th Mersenne prime ! I didn't know. 2^1398268*(2^13982691)*3 : SUCCESS 2^2976220*(2^29762211) * 3 : NO SUCCESS 

20170901, 00:06  #10  
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
3^{2}×17×61 Posts 
Quote:
By uploading uselessly large algebraically trivial results into factordb, you are sabotaging users who use factordb for proper reasons. 

20170902, 00:21  #11 
Oct 2011
2^{2}·3·41 Posts 

Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Broken aliquot sequences  fivemack  FactorDB  46  20210221 10:46 
Graphs broken for aliquot sequences on factordb  fivemack  Aliquot Sequences  4  20180323 11:54 
Broken aliquot sequences  schickel  FactorDB  18  20130612 16:09 
Aliquot sequence worker for factordb  yoyo  FactorDB  6  20120112 20:58 
New article on aliquot sequences  schickel  mersennewiki  0  20081230 07:07 