![]() |
![]() |
#34 |
Jun 2003
3·5·107 Posts |
![]()
k=695126702655403 (base2) 1423619487038265344 (base 4096) line 304 done till 2M no primes.
|
![]() |
![]() |
![]() |
#35 |
Nov 2004
California
23×3×71 Posts |
![]()
The 100 Ks from 652851979787233 to 213642298225841 are all at n=2M, no new primes.
|
![]() |
![]() |
![]() |
#36 |
Feb 2003
27·3·5 Posts |
![]()
My 100 Ks are at 1.9M, and I found a reportable prime:
744716047603963*2^1884575-1 (567329 digits) ![]() |
![]() |
![]() |
![]() |
#37 |
Jun 2003
3×5×107 Posts |
![]()
k=1108577200132229 (not from above list; uses generic FFT but extremely low wt) has been checked to 2M.
k=355262321784119 (from above list) has been checked to 5M. No primes ![]() |
![]() |
![]() |
![]() |
#38 | |
Jun 2003
110010001012 Posts |
![]() Quote:
The following were checked from 2M-2.5M. Lines 115, 146 and 174 were accidentally checked. Code:
k Line# in file 286565972092003 5 265685529211859 6 296990097378209 7 546088659477761 15 606564403438897 26 640520549022929 31 309363900392467 42 151550479574083 55 226554098321489 115 688216943113151 146 489674245575313 174 695126702655403 304 |
|
![]() |
![]() |
![]() |
#39 |
Nov 2004
California
23×3×71 Posts |
![]()
The 100 Ks from 652851979787233 to 213642298225841 are all at n=2.5M, no new primes.
|
![]() |
![]() |
![]() |
#40 |
Nov 2004
California
23·3·71 Posts |
![]()
When I get to 3M on my current set of numbers, I was going to take another batch and wanted to make sure I have the right list. The first block available starts the number after the last one I reserved. That was 213642298225841 so the first available is k=702943047930463?
For running srsieve, instead of running k=702943047930463 at base 2, I should run k=5623544383443704 at base 4096 (from the line in low4096.txt). The k at base 4096 is not a straight scaling from the k at base 2 due to the way the list was generated with a covering set? |
![]() |
![]() |
![]() |
#41 | ||
Jun 2003
3×5×107 Posts |
![]() Quote:
Quote:
1) when using base=4096 around 2.25M bits (and may be even lower than that) LLR starts using generic FFT instead of zero padded FFT. If you convert it back to base 2 then LLR uses zero padded FFT. To avoid this bug you will have to switch everything back to base 2 once you are done sieving. (Switching to base 4096 results in faster sieving but use it only if you have scripts to deal with the above). 2) Some of the numbers I generated (247k below) when using the covering set from factors of 2^1440-1 have 2 numbers left instead of 1. You will have to account for this when you select the ks from low4096.txt. The following 247ks will have to be converted to 2k per base 4096. (An oversight on my part when I generated the low4096.txt file) The simplest method of creating a base=4096 file or using this method is to sieve using srsieve (for base2 with the original base2 k's) till 1M. Then using a script to convert the remaining numbers to base 4096 (or any other 2^n base) and then sieve till 1T with srsieve and then convert back to base2. Code:
596571372172469 329604383181013 449348815525481 290388549449203 238210099516019 195293136942163 649791024822911 512416936093019 210554823417041 150212846634761 603698136575459 424593884343463 215281809275261 180350193424691 520575141427499 542697714517709 184408582385323 494748499822091 -- first available k of these numbers. 543508609573003 391519398126899 706513778929289 267385427841043 502914687086051 6773099082613 645868391932033 650494494481567 665080734872617 594586632907297 728879985512309 98050354523279 259961603115281 108990638689601 314389730298883 342368118372239 627290469061603 214079320569911 61506576312941 636710433979559 593570553072281 157854004227733 70054221292451 606688779008047 329772873399281 364657042939603 305385139659131 32831786287169 332192596177933 246963559391861 497840821150121 295647428581177 662217283763947 353838944301433 575336015430523 135464720098957 697686011703539 24469953910063 479400201944381 160905232693867 1576288160743 296658220997429 626460784902763 169162475430187 9435133258919 360553783043203 643342616077807 55717612094681 520831113297221 268509388898653 352355176458839 329822563209157 631526805949783 665077381591571 179141696039533 606135060481091 117956521591633 304392416079913 31385488869763 415360821309281 543963830602543 220701439792619 666701162982307 583296803245751 574398347439127 620567802736781 171900952772863 620050518915307 287332909978019 508601448214723 434980071869263 579873702188621 716921069150441 68877512996249 236243554388353 429053223535619 475548257735609 609294640373501 501197284215337 464422801014149 584062449159989 71674804268713 296430590614573 729941399522219 585141955047791 280441633571471 729965759879533 108857700201553 133831616261197 91049168618803 14402475657733 709203553691893 724690255207453 539620695607837 646502813976941 280147265193431 488361927594209 708899485443389 138518010741937 146459280901091 299425214707957 269002384473029 411231818659001 457315721872931 452456873691457 607552757257147 436464478003927 288467689849357 580023348960997 497960751796421 565847928324883 90889378125757 309967011298513 61001258955011 723347431896487 746869154538487 571126417989223 297351491577479 534185974858139 402702336670567 45449008966241 220964378209859 710185187464949 139843210260727 98011142418493 164862287048189 155091067174649 690105401138413 378932727276223 499249550074447 112362146449387 338030528598359 211456007561317 197096062864357 454125519106499 309873469152277 210328019104211 419535566795981 38436440616613 251807687697311 9551817617519 660270012292511 677339459821859 547715034619481 478428935212183 621540210242939 576379701134339 287197295386117 592445611534057 515993828605271 51885503227889 12918177852449 316943456290567 132986513947987 102826193291189 719358541699319 102025119377039 360670699372117 498153298613261 622288063561117 556563755828383 289942208949577 258209818052083 559967303308961 146579619870283 450607708779403 293867787198989 596110080407893 289753915867991 579532891054679 548956972085983 654507999307753 158668513707851 98584966603063 277092298166489 733848740216257 477822656887871 217395006927389 703303476700529 28007640070331 519464036418763 57923831607793 627100596377263 452447091546193 63835171455791 91300493686301 475054435472143 683202535704823 406430260829317 88173806100329 430957507673503 82854909484063 33304221472679 415638754901621 236045541525161 655637234199359 451515392570771 265004862459401 118612225037189 7288746912869 80430774482203 554058819300911 145033944429191 421485945785647 221647110491591 551749767636071 443481015852427 22366946681171 327198832944569 162987125769223 126125987795219 547023627653113 426097735083659 294150045896497 99745264229437 499969973078189 260881140499061 44527128041729 392663881198451 425026935176797 585254059046969 10868680646729 94088186129317 143065354723019 90113380410659 248299119852689 145275730594387 331044906672929 84399031977131 |
||
![]() |
![]() |
![]() |
#42 |
Nov 2004
California
23·3·71 Posts |
![]()
Coding and scripting is fine, it's my math that's suspect
![]() Thanks for the info. |
![]() |
![]() |
![]() |
#43 |
Nov 2004
California
170410 Posts |
![]()
I'll go ahead and reserve the next 100 starting at 702943047930463 and minus 695126702655403 which has been checked. I have a slow machine that can do sieving while waiting.
|
![]() |
![]() |
![]() |
#44 |
Nov 2004
California
23×3×71 Posts |
![]()
The 100 Ks from 652851979787233 to 213642298225841 are all at n=3M, no new primes. Moving on to the 100 ks starting at 702943047930463.
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
High weight k's | kar_bon | Riesel Prime Data Collecting (k*2^n-1) | 26 | 2013-09-11 23:12 |
Low weight k's | kar_bon | Riesel Prime Data Collecting (k*2^n-1) | 18 | 2010-05-14 08:49 |
Low Weight Subsequences | masser | Sierpinski/Riesel Base 5 | 17 | 2007-02-14 02:04 |
Heavy weight K's | Citrix | Twin Prime Search | 8 | 2006-06-10 20:38 |
Low Weight 15k | Citrix | 15k Search | 20 | 2004-06-20 21:00 |