20151209, 16:23  #386 
"Carlos Pinho"
Oct 2011
Milton Keynes, UK
5×7×139 Posts 
Can I request linux 64bit binaries for IB, SB, H and AMD processors? Thank you in advance. Carlos

20151209, 20:43  #387 
"Curtis"
Feb 2005
Riverside, CA
5^{2}×11×17 Posts 

20151210, 02:03  #388  
"Victor de Hollander"
Aug 2011
the Netherlands
10010011000_{2} Posts 
Quote:
It's also good to know it finds the factors with the lucky sigmas ;) . Mersenne B1 and B2 values Stage2time 6.4.4  SVN2745 M1069 (B1=40e6 , B2=12.7e12) 1113 sec  790 sec M1163 (B1=500e6 , B2=15.8e12) 1,547 sec  1,103 sec M1181 (B1=2.9e9 , B2=82.6e12) 6,967 sec  5,101 sec GMPECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Code:
Resuming ECM residue saved with Prime95 Input number is 0x524EB487386A7910F4BD06831FC6E00169AD6462B2E8F3FA67871F815C1EFA553F229D464ECEE9AF1BA9DE7DFE60FFBEC3E38DF878DDE9041D8F90958054729DB7D394C3BEC0512041E7E47DD7C2964D4F86E4628B2F7D0EA6137C0DBC794C1FC46E383925D786B616E39 (256 digits) Using special division for factor of 2^10691 Using B1=4000000040000000, B2=12713429328616, polynomial Dickson(30), sigma=3725672826 dF=524288, k=4, d=5705700, d2=17, i0=9 Step 1 took 16ms Step 2 took 1112614ms ********** Factor found in step 2: 5557036167944892502666285821951871600803581019193074182942021552512721 Found probable prime factor of 70 digits: 5557036167944892502666285821951871600803581019193074182942021552512721 Resuming ECM residue saved with Prime95 Input number is 0x9147A2E44DC7CF72A0E935C6A5B17DB9B421E806990653A5CE2270883D931F04BC0E4B92D7C2A951DCFE8DCEBBD97C4B6A948C38A95B8E8AB435984DA07D775B77D2DF227C0178F23596DB9444226F908FC44E71AF85FCEAE217AFB8005E0750DABFCEC0EA93DD74F7B3359901CB33BEC52F607D3C521AC9851E95AAA1BE025DAC012E09 (318 digits) Using special division for factor of 2^11631 Using B1=500000000500000000, B2=15892280203816, polynomial Dickson(30), sigma=3000085158 dF=524288, k=5, d=5705700, d2=17, i0=71 Step 1 took 0ms Step 2 took 1547358ms ********** Factor found in step 2: 1042816042941845750042952206680089794415014668329850393031910483526456487 Found probable prime factor of 73 digits: 1042816042941845750042952206680089794415014668329850393031910483526456487 Resuming ECM residue saved with Prime95 Input number is 0x1214395AD012FF6F732747927DA7F9F1684B0A4396B182F9030AC8D53DFBA4C66B6BF1F17321FE0918762863C338F490D3EEBDDE0B051E21917932F1A8A788241C1EEDDF977C28153D7FCA61364600F25C1A55E5D8D634024284477D712079C06B26B057DEE465C1004898499F274C7227E5432845DCDD5EC7 (291 digits) Using special division for factor of 2^11811 Using B1=29000000002900000000, B2=82640965106716, polynomial Dickson(30), sigma=4000027779 dF=524288, k=26, d=5705700, d2=17, i0=492 Step 1 took 0ms Step 2 took 6966536ms ********** Factor found in step 2: 1808422353177349564546512035512530001279481259854248860454348989451026887 Found probable prime factor of 73 digits: 1808422353177349564546512035512530001279481259854248860454348989451026887 Code:
Resuming ECM residue saved with Prime95 Input number is 0x524EB487386A7910F4BD06831FC6E00169AD6462B2E8F3FA67871F815C1EFA553F229D464ECEE9AF1BA9DE7DFE60FFBEC3E38DF878DDE9041D8F90958054729DB7D394C3BEC0512041E7E47DD7C2964D4F86E4628B2F7D0EA6137C0DBC794C1FC46E383925D786B616E39 (256 digits) Using special division for factor of 2^10691 Using B1=4000000040000000, B2=12713429328616, polynomial Dickson(30), sigma=0:3725672826 dF=524288, k=4, d=5705700, d2=17, i0=9 Step 1 took 15ms Step 2 took 790442ms ********** Factor found in step 2: 5557036167944892502666285821951871600803581019193074182942021552512721 Found prime factor of 70 digits: 5557036167944892502666285821951871600803581019193074182942021552512721 Resuming ECM residue saved with Prime95 Input number is 0x9147A2E44DC7CF72A0E935C6A5B17DB9B421E806990653A5CE2270883D931F04BC0E4B92D7C2A951DCFE8DCEBBD97C4B6A948C38A95B8E8AB435984DA07D775B77D2DF227C0178F23596DB9444226F908FC44E71AF85FCEAE217AFB8005E0750DABFCEC0EA93DD74F7B3359901CB33BEC52F607D3C521AC9851E95AAA1BE025DAC012E09 (318 digits) Using special division for factor of 2^11631 Using B1=500000000500000000, B2=15892280203816, polynomial Dickson(30), sigma=0:3000085158 dF=524288, k=5, d=5705700, d2=17, i0=71 Step 1 took 0ms Step 2 took 1102802ms ********** Factor found in step 2: 1042816042941845750042952206680089794415014668329850393031910483526456487 Found prime factor of 73 digits: 1042816042941845750042952206680089794415014668329850393031910483526456487 Resuming ECM residue saved with Prime95 Input number is 0x1214395AD012FF6F732747927DA7F9F1684B0A4396B182F9030AC8D53DFBA4C66B6BF1F17321FE0918762863C338F490D3EEBDDE0B051E21917932F1A8A788241C1EEDDF977C28153D7FCA61364600F25C1A55E5D8D634024284477D712079C06B26B057DEE465C1004898499F274C7227E5432845DCDD5EC7 (291 digits) Using special division for factor of 2^11811 Using B1=29000000002900000000, B2=82640965106716, polynomial Dickson(30), sigma=0:4000027779 dF=524288, k=26, d=5705700, d2=17, i0=492 Step 1 took 15ms Step 2 took 5101311ms ********** Factor found in step 2: 1808422353177349564546512035512530001279481259854248860454348989451026887 Found prime factor of 73 digits: 1808422353177349564546512035512530001279481259854248860454348989451026887 

20151210, 02:30  #389  
Romulan Interpreter
Jun 2011
Thailand
5^{2}·7·53 Posts 
Quote:
Last fiddled with by LaurV on 20151210 at 02:33 

20151212, 15:22  #390  
Nov 2008
3·167 Posts 
Quote:
"Error, save file line has no '=' in : [Fri Dec 11 18:" whereas the version in this : ecm70devsvn2256x64nehalem.zip copes just fine with the missing '=' and carries on. Not really practical to edit the results file when it contains the residues from 600 curves.... 

20151212, 19:07  #391 
Sep 2004
5×37 Posts 
Thanks for the binaries.
They are faster than all previous precompiled versions that I have for my laptop but the autoincrease of B1 bounds has disappeared (i option) and B2scale also. It may cause aliqueit to crash in some cases and ecp.py to be tweaked. Philippe 
20151212, 19:07  #392  
Apr 2007
Spessart/Germany
2×3^{4} Posts 
Quote:
Indeed this version is about 22% faster at stage 2 as my old one with GMP 4.4, very nice! The zip contains 2 more exefiles 'ecmfactor' and 'multiecm', any info about them available? @ Gordon: I simply wrote a 20 line proggy with Lazarus, reading a prime95stage1outputtxtfile, deleting all lines starting with a bracket '[' and resaving it to an gmpstage2inputfile. I never had problems with the bracket 

20151220, 15:03  #393  
Nov 2008
501_{10} Posts 
Quote:
I too am curious about multiecm... 

20151220, 16:32  #394 
Einyen
Dec 2003
Denmark
101111011101_{2} Posts 
I do not know what "ecmfactor.exe" and "multiecm.exe" are used for. I just include them as they are compiled along side of "ecm.exe". I guess we should ask the GMPECM team.
@Gordon: Maybe you should create a thread in the GMPECM forum about the issue with interim files from Prime95. I have nothing to do with the GMPECM development team, I'm just compiling it (when I can figure out to get it to work). Last fiddled with by ATH on 20151220 at 16:33 
20151223, 10:53  #395 
Oct 2007
Manchester, UK
53C_{16} Posts 
Is there an additional benefit if compiled with ffastmath, or is that too dangerous?

20151225, 23:54  #396 
Einyen
Dec 2003
Denmark
3,037 Posts 
Got the latest svn 2749 compiled on a Broadwell laptop only with GMP 6.0.0 unfortunately as 6.1.0 failed to compile (I sent a mail to the gmp site). I also did new compile on haswell and sandybridge with slightly new options:
Broadwell; GMPECM7 SVN 2749 with GMP 6.0.0: gmpecm7svn2749broadwell.zip (compiled on Core i5 5200U laptop) Haswell: GMPECM7 SVN 2749 with GMP 6.1.0: gmpecm7svn2749haswell.zip (compiled on a HaswellE Core i7 5960X desktop) Sandy Bridge: GMPECM7 SVN 2749 with GMP 6.1.0: gmpecm7svn2749sandybridge.zip (compiled on a Core i7 2720QM laptop) 
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Project Links  masser  Sierpinski/Riesel Base 5  25  20111126 09:21 
Links to Precompiled Msieve versions  wblipp  Msieve  0  20110717 20:59 
Links  davieddy  Information & Answers  9  20101008 14:27 
Links question  ET_  PrimeNet  0  20080126 09:35 
Links.  Xyzzy  Forum Feedback  2  20070318 02:17 