mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > Alberico Lepore

Reply
 
Thread Tools
Old 2022-01-12, 08:45   #1
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

20A16 Posts
Minus MOOT CRYPTO POST : RSA in O(log_2 (N^1/2))

MUTE CRYPTO POST



RSA in O(log_2 (N^1/2))







Code:
x == -1/72*sqrt(288*h - ((2*h - 107)^2 + 12*h^2 + 1588*h - 1140)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) - 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) - 1728/sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 10584) - 1/72*sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 19/12






Code:
x == 1/72*sqrt(288*h - ((2*h - 107)^2 + 12*h^2 + 1588*h - 1140)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) - 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) - 1728/sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 10584) - 1/72*sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 19/12






Code:
x == -1/72*sqrt(288*h - ((2*h - 107)^2 + 12*h^2 + 1588*h - 1140)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) - 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) + 1728/sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 10584) + 1/72*sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 19/12





Code:
x == 1/72*sqrt(288*h - ((2*h - 107)^2 + 12*h^2 + 1588*h - 1140)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) - 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3) + 1728/sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 10584) + 1/72*sqrt((16*h^2 + 36*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)*(4*h + 147) + 1160*h + 1296*(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(2/3) + 10309)/(-1/46656*(2*h - 107)^3 + 1/432*h^3 - 1/7776*(3*h^2 + 397*h - 285)*(2*h - 107) + 473/2592*h^2 - 5/144*h + 1/23328*sqrt(-768*h^4 - 1139968*h^3 - 461642592*h^2 - 28087703280*h - 156632987367) - 4961/648)^(1/3)) + 19/12
Alberico Lepore is offline   Reply With Quote
Old 2022-01-15, 11:38   #2
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

10128 Posts
Default

Every time I think I've made it!
Every time I notice the opposite!

Again I think I made it!
But I still don't find the opposite!

Pursuing one's goals while remaining morally and ethically correct repays the soul.
Alberico Lepore is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Applications of factoring besides crypto? SALMONMILK Factoring 5 2021-04-03 15:59
Crypto News Nick Tales From the Crypt(o) 52 2020-12-17 21:16
ElGamal crypto without prime ElChapo Math 9 2017-06-10 03:26
Crypto 2007 R.D. Silverman Lounge 2 2007-08-08 20:24
crypto game MrHappy Lounge 0 2005-01-19 16:27

All times are UTC. The time now is 21:05.


Wed Oct 5 21:05:38 UTC 2022 up 48 days, 18:34, 1 user, load averages: 1.72, 1.32, 1.26

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔