mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Miscellaneous Math

Closed Thread
 
Thread Tools
Old 2019-07-11, 22:21   #45
samuel
 
"silent magician!!"
Apr 2019
nowheresville califo

101 Posts
Default

Quote:
Originally Posted by retina View Post
Hehe. Well according to samuel ...... I have found M52.

It seems the type of polynomial doesn't matter. Just any polynomial will do. As long as f(1)=M1, etc. then you're good to go.
excuse me it is common sense i thought everyone knows. u guys are just outrite mean and rude i hope you guys all get deported by trump our country do not need nasty people like u
samuel is offline  
Old 2019-07-11, 22:24   #46
bsquared
 
bsquared's Avatar
 
"Ben"
Feb 2007

5×659 Posts
Default

Quote:
Originally Posted by samuel View Post
excuse me it is common sense i thought everyone knows. u guys are just outrite mean and rude i hope you guys all get deported by trump our country do not need nasty people like u
If your polynomial fitting prowess is so awesome, why aren't you rich? Just create a fit to some stock market data and presto! Invest accordingly.
bsquared is offline  
Old 2019-07-11, 22:59   #47
Uncwilly
6809 > 6502
 
Uncwilly's Avatar
 
"""""""""""""""""""
Aug 2003
101×103 Posts

5×1,741 Posts
Default

Quote:
Originally Posted by samuel View Post
i hope you guys all get deported by trump our country do not need nasty people like u
How is Trump (it is considered demeaning to not capitalize a person's name) deport an Englishman that lives in England or Spain? How would he deport an Italian that lives in Italy? How about a Romanian that lives in Thailand? Or a person whose family has been here longer than Trump's own family? And who knows where Retina lives? much less where it was hatched.

Quote:
Originally Posted by Karl Popper
The more we learn about the world, and the deeper our learning, the more conscious, specific, and articulate will be our knowledge of what we do not know; our knowledge of our ignorance. For this indeed, is the main source of our ignorance - the fact that our knowledge can be only finite, while our ignorance must necessarily be infinite.
Uncwilly is offline  
Old 2019-07-12, 00:19   #48
VBCurtis
 
VBCurtis's Avatar
 
"Curtis"
Feb 2005
Riverside, CA

2·5·19·23 Posts
Default

Quote:
Originally Posted by samuel View Post
excuse me it is common sense i thought everyone knows. u guys are just outrite mean and rude i hope you guys all get deported by trump our country do not need nasty people like u
Your common sense is dead wrong- and everyone here knows it.

It's quaint that you think this forum has only members living in America. It's like you've never traveled out of the flyover part of the US and can't even conceive of other parts of the world. It's too bad you won't be around here long enough to look back and tell us how clueless you were as a child.
VBCurtis is online now  
Old 2019-07-12, 00:20   #49
Prime95
P90 years forever!
 
Prime95's Avatar
 
Aug 2002
Yeehaw, FL

11011110111012 Posts
Default

Quote:
Originally Posted by Uncwilly View Post
(it is considered demeaning to not capitalize a person's name)
Certainly samuel does not want to demean our President. Perhaps we should start a GoFundMe page to purchase poor samuel a keyboard without a broken shift key.
Prime95 is online now  
Old 2019-07-12, 01:32   #50
retina
Undefined
 
retina's Avatar
 
"The unspeakable one"
Jun 2006
My evil lair

22·1,447 Posts
Default

Quote:
Originally Posted by samuel View Post
excuse me it is common sense i thought everyone knows. u guys are just outrite mean and rude i hope you guys all get deported by trump our country do not need nasty people like u
Do you disclaim my discovery of M52? I am using your very own criterion, a polynomial that produces f(n) = Mn, for n=1 to 51. So it must be correct, right?

You can't have it both ways. Either you accept my result for M52, or you accept that using any polynomial is not the correct approach. Which is it?
retina is offline  
Old 2019-07-12, 03:55   #51
nomead
 
nomead's Avatar
 
"Sam Laur"
Dec 2018
Turku, Finland

23×41 Posts
Default

Quote:
Originally Posted by samuel View Post
excuse me it is common sense i thought everyone knows. u guys are just outrite mean and rude i hope you guys all get deported by trump our country do not need nasty people like u
Well, let's see now, trump (with a small T).

https://www.lexico.com/en/definition/trump

Quote:
Phrasal Verbs
trump something up
Invent a false accusation or excuse.

‘they've trumped up charges against her’
...and the one I enjoy more
Quote:
VERB
[WITH OBJECT]
informal
Break wind audibly.
Fart someone out of the country? Now that's some mighty wind!
nomead is offline  
Old 2019-07-12, 06:13   #52
samuel
 
"silent magician!!"
Apr 2019
nowheresville califo

101 Posts
Default

Quote:
Originally Posted by retina View Post
Do you disclaim my discovery of M52? I am using your very own criterion, a polynomial that produces f(n) = Mn, for n=1 to 51. So it must be correct, right?

You can't have it both ways. Either you accept my result for M52, or you accept that using any polynomial is not the correct approach. Which is it?
you never even provided your polynomial, i dont see jack shit, before you can say anything you have done is rite state your polynomial CLEARLY
Quote:
Originally Posted by Uncwilly View Post
How is Trump (it is considered demeaning to not capitalize a person's name) deport an Englishman that lives in England or Spain? How would he deport an Italian that lives in Italy? How about a Romanian that lives in Thailand? Or a person whose family has been here longer than Trump's own family? And who knows where Retina lives? much less where it was hatched.
it is you guys fault, you guys are bullying me and led me to forget capitalize honorable Trump's name. if you guys stop picking on me then that would not have happened, u guys are mean and rude and disrespectful. i am simply voicing my opinion and voice and u guys imediately sliecned me
Quote:
Originally Posted by nomead View Post
Well, let's see now, trump (with a small T).

https://www.lexico.com/en/definition/trump



...and the one I enjoy more

Fart someone out of the country? Now that's some mighty wind!
how dare u disrespect our president? whatever u say, he is OUR PRESIDENT, facts dont change. and he will be re-elected because he is doing such a good job, kick all the asians and blacks out, kick all the democrats out, america belongs to us and us only. economy is booming, according to Trump he is doing very well on the polls and everyone likes him. he told us that all democrat people running against him are nasty. u guys are picking on me just like how the media are picking on trump, baseless and all bs america would be a better place without Trump haters and minorities, that is the only way our society would be peaceful and prosoper that must be it.
samuel is offline  
Old 2019-07-12, 06:29   #53
retina
Undefined
 
retina's Avatar
 
"The unspeakable one"
Jun 2006
My evil lair

22×1,447 Posts
Default

Quote:
Originally Posted by samuel View Post
you never even provided your polynomial, i dont see jack shit, before you can say anything you have done is rite state your polynomial CLEARLY
I did. It is a Lagrange interpolation. The polynomial is generated by the code on-the-fly. To print it out would be easy, but pointless and unnecessarily verbose. I might have made a mistake in the code. But anyone can check the result by implementing their own version. The output should be precisely the same, there isn't any guesswork involved with Lagrange interpolation. But even so, it does still generate ALL known 51 MP exponents, so even if it is not a correct implementation of Lagrange interpolation, it doesn't matter because it still meets your criterion of being a polynomial to give those 51 values.

You can't escape it by just trying to delay things by acting dumb. Choose: Accept the M52 value, or accept that a polynomial generating all 51 MP exponents might be incorrect. Which is it?

Do you know what "rite" means? Maybe you should state you objections CLEARLY.

Quote:
Originally Posted by samuel View Post
it is you [sic] guys fault, you guys are bullying me and led me to forget ...
Yes, good skills. Always blame someone else for your mistakes and laziness. That will get everywhere you want to be. Or at the very least it will get you everywhere you deserve to be.
retina is offline  
Old 2019-07-12, 06:39   #54
LaurV
Romulan Interpreter
 
LaurV's Avatar
 
Jun 2011
Thailand

34×109 Posts
Default

This function accurately predicts M52. No joke. Additionally, this is a very nice polynomial, note the alternating of the signs, and the beautiful parabolic form...



Code:
  x^52 
 -599896610*x^51
 +164428057965829331*x^50
 -27326851920585149770665166*x^49
 +3081681169024035842601930877915284*x^48
 -250044744597989199952740507532413101909616*x^47
 +15102503958453003925784912121720117252690212167612*x^46
 -692917546537954063907317709878189716543052426918374035168*x^45
 +24425514371010145415814396846629214233463692554013634025038230258*x^44
 -664679911806578075026324695160659094977083152889400751383610945344538444*x^43
 +13954452473018229682996259045363769436477935601143890180222495215471545720699894*x^42
 -224766987714270296787782054564130770179264100353183842511140022114218230874961991358180*x^41
 +2749092496565112581131911026555889272129719108239889929415521283485052385858019570154141232548*x^40
 -25151901431936622473178208827953704998656370355748563765101904861960277165135051298694878893049407168*x^39
 +168863601527716901393013933969867162429156700433207591824907997161566062273025185746345286240133537981552748*x^38
 -813901892726879572596629751461281291206111862521781623690478061752326847089080466172274010467293007174821846632688*x^37
 +2756246518568545766812472897249735545726799647948146211360527356293358898021557300603682781697052220655094815527806900063*x^36
 -6440266092244507042946974129957983007336533636427885865686240459200618860188277134765403441877745007848192701080913510037320438*x^35
 +10228762821228247044150744770308207316130494550540335832111735431724982608148358606885474493704467245526687419825234320185805137245133*x^34
 -10889219650645139080252165071629402208594652531845001142367529363373166179134613197307574498185590823873460585259583070624485886953931752138*x^33
 +7646870080203937872451668091223223746470847342786021403401309721579865370079485755855869143847902370312289256160084517844584587933959823002022056*x^32
 -3479169076439342555659576136864580422062463744577674820251910284094483840924692768320230967357679863435356982503825845406735782389220334319484274830368*x^31
 +1012823483363117123002515250024046838299632337274497361482682828315240886284610410865748888740335179564111322173960306002962318246973413936757988866445556216*x^30
 -190162754780183393472416173011272194132938860133963051839537276054605073783582086391722616811834421895183032168873173437100075303493314276288352392165215070825216*x^29
 +23431663862176695143051261529237281267544748210330544240031836277941530036574663989425157312810511425680097841488726585224262395717871780186591707918961101568379193340*x^28
 -1929204022288692439485586692289400634159545700459920872765403126157396009570431978768516656971583363077205775888007195913872558224844265022139429446850997446665086221677576*x^27
 +107964598604691182316045718628354980694721884399493162394599849520083150667057078530962588970202310181623454228273504070172616178044467184057914120793226468643579632630496263604*x^26
 -4177641710674110350215896258027367432916412355910970685683543378222512854359129291279613684941431856447747428540669720305990072619078611640355819722173045873008089177784195320627032*x^25
 +113557547870183359286466222636217784645906524460194409321924885909787408007856072856380796601522875780035802239603775519671952028676951971116233566344264186752400899174975340727981493352*x^24
 -2196435377581293749224486361711716147169500229988686299569594366058111379464441853654441809087682946104376921594443398510467022337202684250018037038503124262320422646565602823281018318883520*x^23
 +30504179921683122703789143217055030216491265809623829797374130927385070880330281957724512627037641651959057047232126561532173978880522685601234294956593657385316405134324309978049347185068603960*x^22
 -305757834195648110818814491407865423889228827641129351365106024380285227988624371331676684777324614891665950619025411085785819562951474593807295167444513909197289095497427968924007788201042043829408*x^21
 +2215266818225984339520960068227232106816886680301352246890424091565202282677182749877698680964423308233337290755832204082535980343653974727620683243617628008385818702740652488604226749315733176332729167*x^20
 -11578954524477854743951927936306655070922552851051462380877092781359029493858018884389888006495258239807905045582494045938029990239292080244397452594585172836006198102974988293439868249228592791009432353582*x^19
 +43426529513186721057844623608430840611947966801549494735794962979420096619585925416363800612967334966152009902512689787121094371373024019095631563779982693430012957125456963373573058045965842309025652844744477*x^18
 -115750687216299249784055357301825353247770196385243015051891568297698428895918966518320725225369803603350265159062252682461310418001829702516985367792869004657187783381893946202989526862441853307722885682190916162*x^17
 +216044443768289780047321765050646325477050749002198256875869809755796131723661733221167746829720468032348126801260047848093859873335948416256949310734961984366843148826399484157672546945500793248786890101848237148612*x^16
 -276475312601476424372411415019505293859093657971545117850566466352485534291509930013101460844260390083696108503312069865979473765083843408596667584349494718122248275204396813131263883984337294127623879862707976036035312*x^15
 +235990116078271513313348670843531064621757664009191950340131915437214727376786965060495254592334196942279176260111027653002966999202355473251577528317755347731676160454900460000914492906756114270017987586618501920368988492*x^14
 -130166325079606534411388577655698809421686980848196196145486650973012341397845923999331962328489620617394553948457124933610953343552499456524740507965675400189637919842439041877629987878400015777839229488630143281263530231712*x^13
 +45056651511708876387470171810618471697488153533824211070717015794902891904133298862775485774651255025045699693676770018248027406791008323381376688531871770464715123073576342564708900101587081579884158340048063666922356156378418*x^12
 -9621010048508079207022286330820785915420308914033496633693002853239786351337794318822080546325500211184906681275045976906747486523867579345799189403277171297002379733953244700928623718013254595389258463779470340693702338606270572*x^11
 +1283606109900181000101909857244945729796530911717679256005518318172771731245836497054950364084859352629963883961914899768199714375051792673873628664857580624810141280045832064071967846168834572088834338402782611296507740089033681078*x^10
 -108848771433937759936182954271655988703945451860024739623029886839021949814972389057336526898325085288592354104885198698581403929042958035818189378416901747108248169332071262322877114835972006981500593709432458342516000130700233988868*x^9
 +5932084421753103579349930892594538401270542463634315873112479066751965643692563020940913142000758872040826220784438434435194632202106214532432817367628654850304950605515388881972389990326884923284297134114636395021181912969244509663476*x^8
 -208893397911459593562155146590582295304882252732432420313750439008188037766704357922339859090039301743874635341561104244372330103807561981448221557190428011056748384327220701146525961106907403934927418967922379378235251367763017993265408*x^7
 +4761798498733713894329771409929901453564495842855902705600859764174598125662289892389301558560054356558242962404399108110155731777232655707332557258055927075897692046473103073653517056848194383432164753318235115825848849044352150344469084*x^6
 -69955997648362029927581640915170434996425816164702765388058364324007326840396593388669755785190267809037896150439391764057725132829331948181749941059672417266331583107925254691196270849658756365876080633803460559334459792091465867589314800*x^5
 +652259566110566715038845980133214563905427771610875682931018618683815985028529491509424698081079132196490429601109014065689674991064686825274485012228137467332213862465074622705031793221664176335196827843903873370623177553930888442109865265*x^4
 -3741233869226820062924163677028424856783168420964485784513975103453345636185300667988356555484992053343163886547630724814025489242204023588179790807545758448992066394243828406257227858956588026351211418069264863649889655288579765186983611386*x^3
 +12487569615933713158728160875985473003784012276084094162923825650008334770091121601052458605289022086105805546716517237213294067299990368364347369718096301389610357218967767484082032133334142616965750814254900537797482387439675870748380198371*x^2
 -21762433225751998935266859944041322097920276429077506762309847084772250833756691047709969687736407143160939032265879199335389573993986567557580171104331657486806938117917218148612034521765878237681999235495686105388230737156251068108105823462*x
 +15027416881642620238516719238641150273014449460310227284346019129897308583492176605461526340173062586266443031850810900373949443388410558927166716165799446933030635567187611842569008904292459110725097642046858345946947360791114292055427228160
LaurV is offline  
Old 2019-07-12, 06:47   #55
retina
Undefined
 
retina's Avatar
 
"The unspeakable one"
Jun 2006
My evil lair

22×1,447 Posts
Default

Quote:
Originally Posted by LaurV View Post
This function accurately predicts M52. No joke. Additionally, this is a very nice polynomial, note the alternating of the signs, and the beautiful parabolic form...



Code:
  x^52 
 -599896610*x^51
 +164428057965829331*x^50
 -27326851920585149770665166*x^49
 +3081681169024035842601930877915284*x^48
 -250044744597989199952740507532413101909616*x^47
 +15102503958453003925784912121720117252690212167612*x^46
 -692917546537954063907317709878189716543052426918374035168*x^45
 +24425514371010145415814396846629214233463692554013634025038230258*x^44
 -664679911806578075026324695160659094977083152889400751383610945344538444*x^43
 +13954452473018229682996259045363769436477935601143890180222495215471545720699894*x^42
 -224766987714270296787782054564130770179264100353183842511140022114218230874961991358180*x^41
 +2749092496565112581131911026555889272129719108239889929415521283485052385858019570154141232548*x^40
 -25151901431936622473178208827953704998656370355748563765101904861960277165135051298694878893049407168*x^39
 +168863601527716901393013933969867162429156700433207591824907997161566062273025185746345286240133537981552748*x^38
 -813901892726879572596629751461281291206111862521781623690478061752326847089080466172274010467293007174821846632688*x^37
 +2756246518568545766812472897249735545726799647948146211360527356293358898021557300603682781697052220655094815527806900063*x^36
 -6440266092244507042946974129957983007336533636427885865686240459200618860188277134765403441877745007848192701080913510037320438*x^35
 +10228762821228247044150744770308207316130494550540335832111735431724982608148358606885474493704467245526687419825234320185805137245133*x^34
 -10889219650645139080252165071629402208594652531845001142367529363373166179134613197307574498185590823873460585259583070624485886953931752138*x^33
 +7646870080203937872451668091223223746470847342786021403401309721579865370079485755855869143847902370312289256160084517844584587933959823002022056*x^32
 -3479169076439342555659576136864580422062463744577674820251910284094483840924692768320230967357679863435356982503825845406735782389220334319484274830368*x^31
 +1012823483363117123002515250024046838299632337274497361482682828315240886284610410865748888740335179564111322173960306002962318246973413936757988866445556216*x^30
 -190162754780183393472416173011272194132938860133963051839537276054605073783582086391722616811834421895183032168873173437100075303493314276288352392165215070825216*x^29
 +23431663862176695143051261529237281267544748210330544240031836277941530036574663989425157312810511425680097841488726585224262395717871780186591707918961101568379193340*x^28
 -1929204022288692439485586692289400634159545700459920872765403126157396009570431978768516656971583363077205775888007195913872558224844265022139429446850997446665086221677576*x^27
 +107964598604691182316045718628354980694721884399493162394599849520083150667057078530962588970202310181623454228273504070172616178044467184057914120793226468643579632630496263604*x^26
 -4177641710674110350215896258027367432916412355910970685683543378222512854359129291279613684941431856447747428540669720305990072619078611640355819722173045873008089177784195320627032*x^25
 +113557547870183359286466222636217784645906524460194409321924885909787408007856072856380796601522875780035802239603775519671952028676951971116233566344264186752400899174975340727981493352*x^24
 -2196435377581293749224486361711716147169500229988686299569594366058111379464441853654441809087682946104376921594443398510467022337202684250018037038503124262320422646565602823281018318883520*x^23
 +30504179921683122703789143217055030216491265809623829797374130927385070880330281957724512627037641651959057047232126561532173978880522685601234294956593657385316405134324309978049347185068603960*x^22
 -305757834195648110818814491407865423889228827641129351365106024380285227988624371331676684777324614891665950619025411085785819562951474593807295167444513909197289095497427968924007788201042043829408*x^21
 +2215266818225984339520960068227232106816886680301352246890424091565202282677182749877698680964423308233337290755832204082535980343653974727620683243617628008385818702740652488604226749315733176332729167*x^20
 -11578954524477854743951927936306655070922552851051462380877092781359029493858018884389888006495258239807905045582494045938029990239292080244397452594585172836006198102974988293439868249228592791009432353582*x^19
 +43426529513186721057844623608430840611947966801549494735794962979420096619585925416363800612967334966152009902512689787121094371373024019095631563779982693430012957125456963373573058045965842309025652844744477*x^18
 -115750687216299249784055357301825353247770196385243015051891568297698428895918966518320725225369803603350265159062252682461310418001829702516985367792869004657187783381893946202989526862441853307722885682190916162*x^17
 +216044443768289780047321765050646325477050749002198256875869809755796131723661733221167746829720468032348126801260047848093859873335948416256949310734961984366843148826399484157672546945500793248786890101848237148612*x^16
 -276475312601476424372411415019505293859093657971545117850566466352485534291509930013101460844260390083696108503312069865979473765083843408596667584349494718122248275204396813131263883984337294127623879862707976036035312*x^15
 +235990116078271513313348670843531064621757664009191950340131915437214727376786965060495254592334196942279176260111027653002966999202355473251577528317755347731676160454900460000914492906756114270017987586618501920368988492*x^14
 -130166325079606534411388577655698809421686980848196196145486650973012341397845923999331962328489620617394553948457124933610953343552499456524740507965675400189637919842439041877629987878400015777839229488630143281263530231712*x^13
 +45056651511708876387470171810618471697488153533824211070717015794902891904133298862775485774651255025045699693676770018248027406791008323381376688531871770464715123073576342564708900101587081579884158340048063666922356156378418*x^12
 -9621010048508079207022286330820785915420308914033496633693002853239786351337794318822080546325500211184906681275045976906747486523867579345799189403277171297002379733953244700928623718013254595389258463779470340693702338606270572*x^11
 +1283606109900181000101909857244945729796530911717679256005518318172771731245836497054950364084859352629963883961914899768199714375051792673873628664857580624810141280045832064071967846168834572088834338402782611296507740089033681078*x^10
 -108848771433937759936182954271655988703945451860024739623029886839021949814972389057336526898325085288592354104885198698581403929042958035818189378416901747108248169332071262322877114835972006981500593709432458342516000130700233988868*x^9
 +5932084421753103579349930892594538401270542463634315873112479066751965643692563020940913142000758872040826220784438434435194632202106214532432817367628654850304950605515388881972389990326884923284297134114636395021181912969244509663476*x^8
 -208893397911459593562155146590582295304882252732432420313750439008188037766704357922339859090039301743874635341561104244372330103807561981448221557190428011056748384327220701146525961106907403934927418967922379378235251367763017993265408*x^7
 +4761798498733713894329771409929901453564495842855902705600859764174598125662289892389301558560054356558242962404399108110155731777232655707332557258055927075897692046473103073653517056848194383432164753318235115825848849044352150344469084*x^6
 -69955997648362029927581640915170434996425816164702765388058364324007326840396593388669755785190267809037896150439391764057725132829331948181749941059672417266331583107925254691196270849658756365876080633803460559334459792091465867589314800*x^5
 +652259566110566715038845980133214563905427771610875682931018618683815985028529491509424698081079132196490429601109014065689674991064686825274485012228137467332213862465074622705031793221664176335196827843903873370623177553930888442109865265*x^4
 -3741233869226820062924163677028424856783168420964485784513975103453345636185300667988356555484992053343163886547630724814025489242204023588179790807545758448992066394243828406257227858956588026351211418069264863649889655288579765186983611386*x^3
 +12487569615933713158728160875985473003784012276084094162923825650008334770091121601052458605289022086105805546716517237213294067299990368364347369718096301389610357218967767484082032133334142616965750814254900537797482387439675870748380198371*x^2
 -21762433225751998935266859944041322097920276429077506762309847084772250833756691047709969687736407143160939032265879199335389573993986567557580171104331657486806938117917218148612034521765878237681999235495686105388230737156251068108105823462*x
 +15027416881642620238516719238641150273014449460310227284346019129897308583492176605461526340173062586266443031850810900373949443388410558927166716165799446933030635567187611842569008904292459110725097642046858345946947360791114292055427228160
Did I do something wrong?

Output:
Code:
(1, 1)
(2, 4503599627370496)
(3, 6461081889226673298932241L)
(4, 20282409603651670423947251286016L)
(5, 2220446049250313080847263336181640625L)
(6, 29098125988731506183153025616435306561536L)
(7, 88124787089723195184393736687912818113311201L)
(8, 91343852333181432387730302044767688728495783936L)
(9, 41745579179292917813953351511015323088870709282081L)
(10, 10000000000000000000000000000000000000000000000000000L)
(11, 1420429319844313329730664601483335671261683881745483121L)
(12, 131046309360030956735917227964932955078950997486894841856L)
(13, 8415003868347247618489696679505181495471801448798649088081L)
(14, 396878758299381678483277913691857524931552116018231373725696L)
(15, 14346483754816115705326675655584267587983049452304840087890625L)
(16, 411376139330301510538742295639337626245683966408394965837152256L)
(17, 9623740671590430512036973218231244061509899995368999956333424961L)
(18, 188005374836229120894273278138806956375747747317139671689960882176L)
(19, 3127427491907749548018497790443751608857168317658177523074947729361L)
(20, 45035996273704960000000000000000000000000000000000000000000000000000L)
(21, 569381465857367090636427305760163241950353347303833610101782245331441L)
(22, 6397044955556976591131187821114346488001084082080638724121570381398016L)
(23, 64542751082767918430897798773372060387158551764172664212787858136578721L)
(24, 590180110002114158896983994712576414865667267958188575935810179040280576L)
(25, 4930380657631323783823303533017413935457540219431393779814243316650390625L)
(26, 37897808285809946754314018122822632588544058917173976180759586038324658176L)
(27, 269721605590607563262106870407286853611938890184108047911269431464974473521L)
(28, 1787383027988360473982812052191328276130059755787807872687032756955267465216L)
(29, 11083984014029299642865954626156618594848630761272269796423949481912843741841L)
(30, 64610818892266732989322410000000000000000000000000000000000000000000000000000L)
(31, 355474194989290415985029973003960310543947190232327861184450343437277893144961L)
(32, 1852673427797059126777135760139006525652319754650249024631321344126610074238976L)
(33, 9177510153372654554193272103133776340668051395386314736669649668242693988204161L)
(34, 43341474902484949774640699738822870784623753675764301839390461949813798161350656L)
(35, 195676335334400864206280649533004774272695771575314438450732268393039703369140625L)
(36, 846700936056091894301310586236842935416138248772949513519821268414868295354679296L)
(37, 3519570358731850980253052314461216733953286131069204992258030372675226266985656881L)
(38, 14084681287183985758907378814685465267498041327756731239439202626583872382284333056L)
(39, 54370029091550798638188000797191977434522333670902667633587010446178514185659719521L)
(40, 202824096036516704239472512860160000000000000000000000000000000000000000000000000000L)
(41, 732420597798915339256472063675960063724772518734180615793956471640054358276296523681L)
(42, 2564266157466905220166580284446519898981639527925384615887131089318170093738824564736L)
(43, 8716852357376396141345672820866202504614545137119176888505149764190543096407324764401L)
(44, 28809729278118710920920186578345254130682023164072451589950208597050497936166471335936L)
(45, 92693806362327086509796617599422237285524038346198327786851223208941519260406494140625L)
(46, 290674709725820274678118934537853379546167984200188897306726561934205893239906936815616L)
(47, 889382567349723813616622786920102290062476195687201215591120594623907908637717010175041L)
(48, 2657934923486999665255219137427226096303047074484677382289612932898524748142652944285696L)
(49, 7765978099609043937218499293609620562868144880570005587642282690671451194588264272062401L)
(50, 22204460492503130808472633361816406250000000000000000000000000000000000000000000000000000L)
(51, 62179776559827072453132867575519319568046426622282306576654209489504376640837619797067601L)
(52, 170676555274132171974277914691501574771358362295975962674353045737940041855191232907575296L)
From:
Code:
def f(x):
 return x**52
 -599896610*x**51
 +164428057965829331*x**50
 -27326851920585149770665166*x**49
 +3081681169024035842601930877915284*x**48
 -250044744597989199952740507532413101909616*x**47
 +15102503958453003925784912121720117252690212167612*x**46
 -692917546537954063907317709878189716543052426918374035168*x**45
 +24425514371010145415814396846629214233463692554013634025038230258*x**44
 -664679911806578075026324695160659094977083152889400751383610945344538444*x**43
 +13954452473018229682996259045363769436477935601143890180222495215471545720699894*x**42
 -224766987714270296787782054564130770179264100353183842511140022114218230874961991358180*x**41
 +2749092496565112581131911026555889272129719108239889929415521283485052385858019570154141232548*x**40
 -25151901431936622473178208827953704998656370355748563765101904861960277165135051298694878893049407168*x**39
 +168863601527716901393013933969867162429156700433207591824907997161566062273025185746345286240133537981552748*x**38
 -813901892726879572596629751461281291206111862521781623690478061752326847089080466172274010467293007174821846632688*x**37
 +2756246518568545766812472897249735545726799647948146211360527356293358898021557300603682781697052220655094815527806900063*x**36
 -6440266092244507042946974129957983007336533636427885865686240459200618860188277134765403441877745007848192701080913510037320438*x**35
 +10228762821228247044150744770308207316130494550540335832111735431724982608148358606885474493704467245526687419825234320185805137245133*x**34
 -10889219650645139080252165071629402208594652531845001142367529363373166179134613197307574498185590823873460585259583070624485886953931752138*x**33
 +7646870080203937872451668091223223746470847342786021403401309721579865370079485755855869143847902370312289256160084517844584587933959823002022056*x**32
 -3479169076439342555659576136864580422062463744577674820251910284094483840924692768320230967357679863435356982503825845406735782389220334319484274830368*x**31
 +1012823483363117123002515250024046838299632337274497361482682828315240886284610410865748888740335179564111322173960306002962318246973413936757988866445556216*x**30
 -190162754780183393472416173011272194132938860133963051839537276054605073783582086391722616811834421895183032168873173437100075303493314276288352392165215070825216*x**29
 +23431663862176695143051261529237281267544748210330544240031836277941530036574663989425157312810511425680097841488726585224262395717871780186591707918961101568379193340*x**28
 -1929204022288692439485586692289400634159545700459920872765403126157396009570431978768516656971583363077205775888007195913872558224844265022139429446850997446665086221677576*x**27
 +107964598604691182316045718628354980694721884399493162394599849520083150667057078530962588970202310181623454228273504070172616178044467184057914120793226468643579632630496263604*x**26
 -4177641710674110350215896258027367432916412355910970685683543378222512854359129291279613684941431856447747428540669720305990072619078611640355819722173045873008089177784195320627032*x**25
 +113557547870183359286466222636217784645906524460194409321924885909787408007856072856380796601522875780035802239603775519671952028676951971116233566344264186752400899174975340727981493352*x**24
 -2196435377581293749224486361711716147169500229988686299569594366058111379464441853654441809087682946104376921594443398510467022337202684250018037038503124262320422646565602823281018318883520*x**23
 +30504179921683122703789143217055030216491265809623829797374130927385070880330281957724512627037641651959057047232126561532173978880522685601234294956593657385316405134324309978049347185068603960*x**22
 -305757834195648110818814491407865423889228827641129351365106024380285227988624371331676684777324614891665950619025411085785819562951474593807295167444513909197289095497427968924007788201042043829408*x**21
 +2215266818225984339520960068227232106816886680301352246890424091565202282677182749877698680964423308233337290755832204082535980343653974727620683243617628008385818702740652488604226749315733176332729167*x**20
 -11578954524477854743951927936306655070922552851051462380877092781359029493858018884389888006495258239807905045582494045938029990239292080244397452594585172836006198102974988293439868249228592791009432353582*x**19
 +43426529513186721057844623608430840611947966801549494735794962979420096619585925416363800612967334966152009902512689787121094371373024019095631563779982693430012957125456963373573058045965842309025652844744477*x**18
 -115750687216299249784055357301825353247770196385243015051891568297698428895918966518320725225369803603350265159062252682461310418001829702516985367792869004657187783381893946202989526862441853307722885682190916162*x**17
 +216044443768289780047321765050646325477050749002198256875869809755796131723661733221167746829720468032348126801260047848093859873335948416256949310734961984366843148826399484157672546945500793248786890101848237148612*x**16
 -276475312601476424372411415019505293859093657971545117850566466352485534291509930013101460844260390083696108503312069865979473765083843408596667584349494718122248275204396813131263883984337294127623879862707976036035312*x**15
 +235990116078271513313348670843531064621757664009191950340131915437214727376786965060495254592334196942279176260111027653002966999202355473251577528317755347731676160454900460000914492906756114270017987586618501920368988492*x**14
 -130166325079606534411388577655698809421686980848196196145486650973012341397845923999331962328489620617394553948457124933610953343552499456524740507965675400189637919842439041877629987878400015777839229488630143281263530231712*x**13
 +45056651511708876387470171810618471697488153533824211070717015794902891904133298862775485774651255025045699693676770018248027406791008323381376688531871770464715123073576342564708900101587081579884158340048063666922356156378418*x**12
 -9621010048508079207022286330820785915420308914033496633693002853239786351337794318822080546325500211184906681275045976906747486523867579345799189403277171297002379733953244700928623718013254595389258463779470340693702338606270572*x**11
 +1283606109900181000101909857244945729796530911717679256005518318172771731245836497054950364084859352629963883961914899768199714375051792673873628664857580624810141280045832064071967846168834572088834338402782611296507740089033681078*x**10
 -108848771433937759936182954271655988703945451860024739623029886839021949814972389057336526898325085288592354104885198698581403929042958035818189378416901747108248169332071262322877114835972006981500593709432458342516000130700233988868*x**9
 +5932084421753103579349930892594538401270542463634315873112479066751965643692563020940913142000758872040826220784438434435194632202106214532432817367628654850304950605515388881972389990326884923284297134114636395021181912969244509663476*x**8
 -208893397911459593562155146590582295304882252732432420313750439008188037766704357922339859090039301743874635341561104244372330103807561981448221557190428011056748384327220701146525961106907403934927418967922379378235251367763017993265408*x**7
 +4761798498733713894329771409929901453564495842855902705600859764174598125662289892389301558560054356558242962404399108110155731777232655707332557258055927075897692046473103073653517056848194383432164753318235115825848849044352150344469084*x**6
 -69955997648362029927581640915170434996425816164702765388058364324007326840396593388669755785190267809037896150439391764057725132829331948181749941059672417266331583107925254691196270849658756365876080633803460559334459792091465867589314800*x**5
 +652259566110566715038845980133214563905427771610875682931018618683815985028529491509424698081079132196490429601109014065689674991064686825274485012228137467332213862465074622705031793221664176335196827843903873370623177553930888442109865265*x**4
 -3741233869226820062924163677028424856783168420964485784513975103453345636185300667988356555484992053343163886547630724814025489242204023588179790807545758448992066394243828406257227858956588026351211418069264863649889655288579765186983611386*x**3
 +12487569615933713158728160875985473003784012276084094162923825650008334770091121601052458605289022086105805546716517237213294067299990368364347369718096301389610357218967767484082032133334142616965750814254900537797482387439675870748380198371*x**2
 -21762433225751998935266859944041322097920276429077506762309847084772250833756691047709969687736407143160939032265879199335389573993986567557580171104331657486806938117917218148612034521765878237681999235495686105388230737156251068108105823462*x
 +15027416881642620238516719238641150273014449460310227284346019129897308583492176605461526340173062586266443031850810900373949443388410558927166716165799446933030635567187611842569008904292459110725097642046858345946947360791114292055427228160

for x in range(1,53): print(x,f(x))
There don't appear to be any MPs in the output.
retina is offline  
Closed Thread

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Super Cullen & Woodall primes Citrix And now for something completely different 1 2017-10-26 09:12
Super Newbie Here Hatterz Information & Answers 15 2012-09-11 22:28
GIMPS people are B-grade super-agents! kuratkull Soap Box 2 2007-12-03 16:50
Intel Mac Minis- Factoring super farm? delta_t Hardware 5 2006-03-08 10:25
personal super computer crash893 Hardware 16 2005-10-08 13:14

All times are UTC. The time now is 05:48.

Wed Oct 21 05:48:14 UTC 2020 up 41 days, 2:59, 0 users, load averages: 1.96, 1.55, 1.44

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.