mersenneforum.org Leyland Primes (x^y+y^x primes)
 Register FAQ Search Today's Posts Mark Forums Read

 2019-09-20, 21:41 #287 NorbSchneider     "Norbert" Jul 2014 Budapest 25·3 Posts Another new PRP: 13952^17559+17559^13952, 72776 digits.
 2019-09-21, 21:46 #288 NorbSchneider     "Norbert" Jul 2014 Budapest 6016 Posts Another new PRP: 11699^17560+17560^11699, 71437 digits.
 2019-09-23, 12:11 #289 NorbSchneider     "Norbert" Jul 2014 Budapest 25·3 Posts Another new PRP: 16696^16957+16957^16696, 71603 digits.
 2019-09-26, 22:20 #290 NorbSchneider     "Norbert" Jul 2014 Budapest 25×3 Posts Another new PRP: 15813^16916+16916^15813, 71031 digits.
 2019-10-03, 20:34 #291 NorbSchneider     "Norbert" Jul 2014 Budapest 25·3 Posts Another new PRP: 14742^16915+16915^14742, 70512 digits.
 2019-10-09, 21:00 #292 NorbSchneider     "Norbert" Jul 2014 Budapest 25·3 Posts Another new PRP: 15770^17589+17589^15770, 73836 digits.
2019-10-12, 19:17   #293
pxp

Sep 2010
Weston, Ontario

179 Posts

Quote:
 Originally Posted by pxp That makes L(40182,47) #1348 and advances the index to L(31870,131), #1354.
I have examined all Leyland numbers in the four gaps between L(31870,131) <67478>, #1354, and L(34684,105) <70103> and found 37 new primes. That makes L(34684,105) #1395.

2019-10-22, 00:07   #294
pxp

Sep 2010
Weston, Ontario

17910 Posts

Quote:
 Originally Posted by pxp That makes L(34684,105) #1395.
I have examined all Leyland numbers in the four gaps between L(34684,105) <70103>, #1395, and L(29356,257) <70746> and found 4 new primes. That makes L(29356,257) #1403.

 2019-10-30, 19:40 #295 NorbSchneider     "Norbert" Jul 2014 Budapest 25·3 Posts Another new PRP: 1239^26228+26228^1239, 81126 digits.
 2019-11-02, 23:38 #296 NorbSchneider     "Norbert" Jul 2014 Budapest 9610 Posts Another new PRP: 12352^18043+18043^12352, 73828 digits.
 2019-11-06, 23:26 #297 NorbSchneider     "Norbert" Jul 2014 Budapest 25×3 Posts Another new PRP: 15010^17699+17699^15010, 73918 digits.

 Similar Threads Thread Thread Starter Forum Replies Last Post Batalov XYYXF Project 16 2019-08-04 00:32 carpetpool Miscellaneous Math 3 2017-08-10 13:47 emily Math 34 2017-07-16 18:44 davar55 Puzzles 9 2016-03-15 20:55 troels munkner Miscellaneous Math 4 2006-06-02 08:35

All times are UTC. The time now is 01:36.

Sun Nov 1 01:36:23 UTC 2020 up 51 days, 22:47, 3 users, load averages: 1.61, 1.75, 1.63