20190720, 20:12  #265 
Mar 2006
Germany
5×569 Posts 
Yes, the "date" "before November 4, 2018" in FactorDB was created after server/database moving by Markus, so not available older dates here.
The list of Leyeland primes contains also some dates like for x=10311050 as reserved/complete, that's why I used "20010604" for those 4 primes then. For other dates expressions like "200206" is enough here as you gave for >#294 in your list. Dates from your and Norberts finds should be better than. Will see how this can be handled. The great advantage of the table is the individual sorting: I tried first to sort by xvalue in the category by the template, but this needed a click to sort the table by digits. Now it's done by sorting by digits and calling the table only. Inserting a new number you don't need to create an index (first column), it's done in the table call. Also: Clicking on "Digits" column first (upwards sorting) and than on "Prover" the smallest unproven number are listed in descending digit order: could be helpful to prove some smaller numbers. ToDo's: pages with information about those numbers, links, stats, current work/reservation, minusside. 
20190722, 16:08  #267  
Sep 2010
Weston, Ontario
244_{8} Posts 
Quote:


20190723, 11:42  #268 
"Norbert"
Jul 2014
Budapest
5·19 Posts 
I found 3 new PRPs:
634^42803+42803^634, 119938 digits, 736^44335+44335^736, 127104 digits, 9946^17491+17491^9946, 69923 digits. 
20190724, 11:14  #269 
Mar 2006
Germany
101100011101_{2} Posts 
Those three new ones are in the Wiki, too.
Some notes:  I'm using a date of discovery for old Leyland primes according to the "When completed" listed here. So listing/sorting in the table is available for those, too.  Primes with missing certificate in FactorDB are marked with a remark in the page and listed as orange in column "Prover" in the table. These certs should be inserted later.  I've found some certs. in FactorDB but not yet listed in pxp's list. I used the date and info of program from FactorDB.  I've inserted some discovery dates for numbers found during doublechecking from here.  Categories for proven and PRPs numbers available now. More to come. 
20190724, 17:12  #270  
Sep 2010
Weston, Ontario
2^{2}·41 Posts 
Quote:


20190724, 17:30  #271 
"Dylan"
Mar 2017
2^{9} Posts 
Reserving the range x = 2000130000, y = 8011000.

20190724, 18:37  #272 
Mar 2006
Germany
B1D_{16} Posts 

20190724, 22:00  #273  
Sep 2010
Weston, Ontario
2^{2}·41 Posts 
Quote:
I was never very interested in the proven/PRP distinction and created the proven Leyland primes list only as a courtesy to xilman who asked me for something like it on July 6. Andrey Kulsha's list has prover/provendate information on 260 of the known proven Leyland primes, including 31 that are still PRP in FactorDB. For these 31 you will not be able to get prover/provendate from FactorDB. For the remaining 229 you can get the information from either Kulsha's list or from FactorDB but I would guess that the FactorDB prover/provendate may or may not agree with Kulsha's. To grab a random example: L(3100,11) is proven prime by Jonathan A. Zylstra on 30 December 2003 according to Kulsha. It is proven prime by Edwin Hall on 15 March 2017 according to FactorDB. Clearly Kulsha's information is likely to be preferred. There are 28 proven Leyland primes that are not in Kulsha's list and for these one necessarily has to rely on FactorDB alone. But these are easy. 27 of them are from RichD (the last three posts here) and one is from Anonymous. 

20190724, 22:47  #274 
Sep 2010
Weston, Ontario
2^{2}×41 Posts 
Hey Dylan. Welcome aboard.
Just so you know, Andrey Kulsha has been missing (I'm guessing that he died) since his last update in January 2017, so there is really noone here to track the reservations. Since January 2017 there have only been two users that are actively searching for new Leyland primes: Norbert Schneider who has added 33 and myself who has added 177. Those 210 combined with the 1250 in Kulsha's list give us the 1460 known Leyland primes to date. While Norbert still conducts his searches by using the (x,y)range system, I do not. My searches are strictly by L(x,y) decimaldigit size and my current search interval is L(32907,92) <64623 decimal digits> to L(29934,157) <65733>. Be sure to post any of your finds to either PRPtop or here (preferably both) so that I can add them to my own list of known Leyland primes. 
20190727, 16:58  #275 
"Norbert"
Jul 2014
Budapest
5×19 Posts 
Another new PRP:
746^44541+44541^746, 127955 digits. 
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Leyland Primes: ECPP proofs  Batalov  XYYXF Project  16  20190804 00:32 
Mersenne Primes p which are in a set of twin primes is finite?  carpetpool  Miscellaneous Math  3  20170810 13:47 
Distribution of Mersenne primes before and after couples of primes found  emily  Math  34  20170716 18:44 
On Leyland Primes  davar55  Puzzles  9  20160315 20:55 
possible primes (real primes & poss.prime products)  troels munkner  Miscellaneous Math  4  20060602 08:35 