mersenneforum.org > Math modified Euler's generalisation of Fermat's theorem
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2017-07-07, 05:36 #1 devarajkandadai     May 2004 22×79 Posts modified Euler's generalisation of Fermat's theorem When the base is a rational integer Euler's generalisation holds. When the base is a Gaussian integer the tentative rule is as follows: For every prime factor (of the composite number) with shape 4m+1 use Euler's totient.For every prime factor with shape 4m+3 use (p^2-1).Reduce product of above product by a factor of 2 for every prime of shape 4m+1 and by a factor of 4 for every prime prime of shape 4m+3. Needless to say exponent and base should be coprime.
 2017-07-07, 13:56 #2 Nick     Dec 2012 The Netherlands 3×601 Posts Recall that we define the norm of a Gaussian integer $$w=a+bi$$, written $$N(w)$$, by $$N(w)=a^2+b^2$$. The essence of the problem here is to derive the formula for the number of units in the ring of Gaussian integers modulo $$w$$. A good way to start is to show that, as long as $$w\neq 0$$, this ring contains precisely $$N(w)$$ distinct elements.

 Similar Threads Thread Thread Starter Forum Replies Last Post devarajkandadai Number Theory Discussion Group 12 2017-12-25 05:43 devarajkandadai Number Theory Discussion Group 14 2017-11-12 20:04 devarajkandadai Number Theory Discussion Group 0 2017-06-24 12:11 devarajkandadai Number Theory Discussion Group 2 2017-06-23 04:39 Citrix Math 24 2007-05-17 21:08

All times are UTC. The time now is 20:47.

Tue Jan 31 20:47:50 UTC 2023 up 166 days, 18:16, 0 users, load averages: 0.90, 0.88, 0.90

Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔