mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Riesel Prime Search

Reply
 
Thread Tools
Old 2013-11-02, 03:22   #34
Citrix
 
Citrix's Avatar
 
Jun 2003

157010 Posts
Default

k=695126702655403 (base2) 1423619487038265344 (base 4096) line 304 done till 2M no primes.
Citrix is offline   Reply With Quote
Old 2013-11-05, 22:12   #35
lsoule
 
lsoule's Avatar
 
Nov 2004
California

170410 Posts
Default

The 100 Ks from 652851979787233 to 213642298225841 are all at n=2M, no new primes.
lsoule is offline   Reply With Quote
Old 2013-11-10, 10:33   #36
Thomas11
 
Thomas11's Avatar
 
Feb 2003

111011100012 Posts
Default

My 100 Ks are at 1.9M, and I found a reportable prime:

744716047603963*2^1884575-1 (567329 digits)
Thomas11 is offline   Reply With Quote
Old 2013-11-15, 05:30   #37
Citrix
 
Citrix's Avatar
 
Jun 2003

2×5×157 Posts
Default

k=1108577200132229 (not from above list; uses generic FFT but extremely low wt) has been checked to 2M.
k=355262321784119 (from above list) has been checked to 5M.

No primes
Citrix is offline   Reply With Quote
Old 2013-11-15, 06:44   #38
Citrix
 
Citrix's Avatar
 
Jun 2003

157010 Posts
Default

Quote:
Originally Posted by Citrix View Post
k=1108577200132229 (not from above list; uses generic FFT but extremely low wt) has been checked to 2M.
k=355262321784119 (from above list) has been checked to 5M.

No primes
Correction: k=1108577200132229 was checked to 1.8M

The following were checked from 2M-2.5M. Lines 115, 146 and 174 were accidentally checked.

Code:
k Line# in file
286565972092003	5
265685529211859	6
296990097378209	7
546088659477761	15
606564403438897	26
640520549022929	31
309363900392467	42
151550479574083	55
226554098321489	115
688216943113151	146
489674245575313	174
695126702655403	304
No primes.
Citrix is offline   Reply With Quote
Old 2013-11-18, 15:11   #39
lsoule
 
lsoule's Avatar
 
Nov 2004
California

23×3×71 Posts
Default

The 100 Ks from 652851979787233 to 213642298225841 are all at n=2.5M, no new primes.
lsoule is offline   Reply With Quote
Old 2013-11-21, 19:16   #40
lsoule
 
lsoule's Avatar
 
Nov 2004
California

23·3·71 Posts
Default

When I get to 3M on my current set of numbers, I was going to take another batch and wanted to make sure I have the right list. The first block available starts the number after the last one I reserved. That was 213642298225841 so the first available is k=702943047930463?

For running srsieve, instead of running k=702943047930463 at base 2, I should run k=5623544383443704 at base 4096 (from the line in low4096.txt). The k at base 4096 is not a straight scaling from the k at base 2 due to the way the list was generated with a covering set?
lsoule is offline   Reply With Quote
Old 2013-11-22, 00:17   #41
Citrix
 
Citrix's Avatar
 
Jun 2003

2·5·157 Posts
Default

Quote:
Originally Posted by lsoule View Post
When I get to 3M on my current set of numbers, I was going to take another batch and wanted to make sure I have the right list. The first block available starts the number after the last one I reserved. That was 213642298225841 so the first available is k=702943047930463?
Yes this is true. I have already checked k=695126702655403 so you can remove that from the next batch.


Quote:
Originally Posted by lsoule View Post
For running srsieve, instead of running k=702943047930463 at base 2, I should run k=5623544383443704 at base 4096 (from the line in low4096.txt). The k at base 4096 is not a straight scaling from the k at base 2 due to the way the list was generated with a covering set?
Yes, you can use the 4096 numbers though there are some problems that I have noticed with this attempt.
1) when using base=4096 around 2.25M bits (and may be even lower than that) LLR starts using generic FFT instead of zero padded FFT. If you convert it back to base 2 then LLR uses zero padded FFT. To avoid this bug you will have to switch everything back to base 2 once you are done sieving.

(Switching to base 4096 results in faster sieving but use it only if you have scripts to deal with the above).

2) Some of the numbers I generated (247k below) when using the covering set from factors of 2^1440-1 have 2 numbers left instead of 1. You will have to account for this when you select the ks from low4096.txt. The following 247ks will have to be converted to 2k per base 4096. (An oversight on my part when I generated the low4096.txt file)

The simplest method of creating a base=4096 file or using this method is to sieve using srsieve (for base2 with the original base2 k's) till 1M. Then using a script to convert the remaining numbers to base 4096 (or any other 2^n base) and then sieve till 1T with srsieve and then convert back to base2.

Code:
596571372172469
329604383181013
449348815525481
290388549449203
238210099516019
195293136942163
649791024822911
512416936093019
210554823417041
150212846634761
603698136575459
424593884343463
215281809275261
180350193424691
520575141427499
542697714517709
184408582385323
494748499822091 -- first available k of these numbers.
543508609573003
391519398126899
706513778929289
267385427841043
502914687086051
6773099082613
645868391932033
650494494481567
665080734872617
594586632907297
728879985512309
98050354523279
259961603115281
108990638689601
314389730298883
342368118372239
627290469061603
214079320569911
61506576312941
636710433979559
593570553072281
157854004227733
70054221292451
606688779008047
329772873399281
364657042939603
305385139659131
32831786287169
332192596177933
246963559391861
497840821150121
295647428581177
662217283763947
353838944301433
575336015430523
135464720098957
697686011703539
24469953910063
479400201944381
160905232693867
1576288160743
296658220997429
626460784902763
169162475430187
9435133258919
360553783043203
643342616077807
55717612094681
520831113297221
268509388898653
352355176458839
329822563209157
631526805949783
665077381591571
179141696039533
606135060481091
117956521591633
304392416079913
31385488869763
415360821309281
543963830602543
220701439792619
666701162982307
583296803245751
574398347439127
620567802736781
171900952772863
620050518915307
287332909978019
508601448214723
434980071869263
579873702188621
716921069150441
68877512996249
236243554388353
429053223535619
475548257735609
609294640373501
501197284215337
464422801014149
584062449159989
71674804268713
296430590614573
729941399522219
585141955047791
280441633571471
729965759879533
108857700201553
133831616261197
91049168618803
14402475657733
709203553691893
724690255207453
539620695607837
646502813976941
280147265193431
488361927594209
708899485443389
138518010741937
146459280901091
299425214707957
269002384473029
411231818659001
457315721872931
452456873691457
607552757257147
436464478003927
288467689849357
580023348960997
497960751796421
565847928324883
90889378125757
309967011298513
61001258955011
723347431896487
746869154538487
571126417989223
297351491577479
534185974858139
402702336670567
45449008966241
220964378209859
710185187464949
139843210260727
98011142418493
164862287048189
155091067174649
690105401138413
378932727276223
499249550074447
112362146449387
338030528598359
211456007561317
197096062864357
454125519106499
309873469152277
210328019104211
419535566795981
38436440616613
251807687697311
9551817617519
660270012292511
677339459821859
547715034619481
478428935212183
621540210242939
576379701134339
287197295386117
592445611534057
515993828605271
51885503227889
12918177852449
316943456290567
132986513947987
102826193291189
719358541699319
102025119377039
360670699372117
498153298613261
622288063561117
556563755828383
289942208949577
258209818052083
559967303308961
146579619870283
450607708779403
293867787198989
596110080407893
289753915867991
579532891054679
548956972085983
654507999307753
158668513707851
98584966603063
277092298166489
733848740216257
477822656887871
217395006927389
703303476700529
28007640070331
519464036418763
57923831607793
627100596377263
452447091546193
63835171455791
91300493686301
475054435472143
683202535704823
406430260829317
88173806100329
430957507673503
82854909484063
33304221472679
415638754901621
236045541525161
655637234199359
451515392570771
265004862459401
118612225037189
7288746912869
80430774482203
554058819300911
145033944429191
421485945785647
221647110491591
551749767636071
443481015852427
22366946681171
327198832944569
162987125769223
126125987795219
547023627653113
426097735083659
294150045896497
99745264229437
499969973078189
260881140499061
44527128041729
392663881198451
425026935176797
585254059046969
10868680646729
94088186129317
143065354723019
90113380410659
248299119852689
145275730594387
331044906672929
84399031977131
Hope this helps!. Unless you are good with coding/scripts it might be better to avoid using higher 2^n bases.
Citrix is offline   Reply With Quote
Old 2013-11-22, 16:29   #42
lsoule
 
lsoule's Avatar
 
Nov 2004
California

23·3·71 Posts
Default

Coding and scripting is fine, it's my math that's suspect

Thanks for the info.
lsoule is offline   Reply With Quote
Old 2013-11-25, 23:56   #43
lsoule
 
lsoule's Avatar
 
Nov 2004
California

32508 Posts
Default

I'll go ahead and reserve the next 100 starting at 702943047930463 and minus 695126702655403 which has been checked. I have a slow machine that can do sieving while waiting.
lsoule is offline   Reply With Quote
Old 2013-12-04, 20:45   #44
lsoule
 
lsoule's Avatar
 
Nov 2004
California

23×3×71 Posts
Default

The 100 Ks from 652851979787233 to 213642298225841 are all at n=3M, no new primes. Moving on to the 100 ks starting at 702943047930463.
lsoule is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
High weight k's kar_bon Riesel Prime Data Collecting (k*2^n-1) 26 2013-09-11 23:12
Low weight k's kar_bon Riesel Prime Data Collecting (k*2^n-1) 18 2010-05-14 08:49
Low Weight Subsequences masser Sierpinski/Riesel Base 5 17 2007-02-14 02:04
Heavy weight K's Citrix Twin Prime Search 8 2006-06-10 20:38
Low Weight 15k Citrix 15k Search 20 2004-06-20 21:00

All times are UTC. The time now is 17:00.

Mon Sep 21 17:00:08 UTC 2020 up 11 days, 14:11, 1 user, load averages: 2.07, 1.75, 1.68

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.