![]() |
![]() |
#45 |
Aug 2010
SPb
2×17 Posts |
![]()
Another interesting sequence
in OEIS A187923 Numbers n with property that 2^(m-1)=1(mod m) and n=3(mod 4) where m=(2*n-1)*n 47, 67, 2731, 2887, 5827, 13567, 41647, 44851, 46051, 47911, 59671, 61231, 66571, 78439, 90107, 109891, 138007, 141067, 144451, 164011, 183907, 321091, 406591, 430987, 460531, 501187, 513731, 532027, 537587, 554731, 598687, 673207, 677447, 792067, 912367, 1015171, 1162927... for n<=708993451 all elements of prime numbers Please help find exceptions if they are. ------------------ Number m has the interesting property. For each item found n this sequence, we have the value m = (2*n-1) * n. This value of m has the following property: p^(m-1)==1(mod m) where p=(2^i)-2 where (i - integer>=2) as called pseudo-prime numbers that satisfy Fermat's little theorem for any base of (2^i)-2 where i - integer>=2 ???? message in Russian http://dxdy.ru/post424085.html#p424085 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Modifying the Lucas Lehmer Primality Test into a fast test of nothing | Trilo | Miscellaneous Math | 25 | 2018-03-11 23:20 |
New PC test re-test plan? | dh1 | Information & Answers | 8 | 2015-12-11 11:50 |
Double check LL test faster than first run test | lidocorc | Software | 3 | 2008-12-03 15:12 |
Will the torture test, test ALL available memory? | swinster | Software | 2 | 2007-12-01 17:54 |
A primality test for Fermat numbers faster than Pépin's test ? | T.Rex | Math | 0 | 2004-10-26 21:37 |