mersenneforum.org > Math New test
 Register FAQ Search Today's Posts Mark Forums Read

 2011-03-17, 21:29 #45 allasc   Aug 2010 SPb 2×17 Posts Another interesting sequence in OEIS A187923 Numbers n with property that 2^(m-1)=1(mod m) and n=3(mod 4) where m=(2*n-1)*n 47, 67, 2731, 2887, 5827, 13567, 41647, 44851, 46051, 47911, 59671, 61231, 66571, 78439, 90107, 109891, 138007, 141067, 144451, 164011, 183907, 321091, 406591, 430987, 460531, 501187, 513731, 532027, 537587, 554731, 598687, 673207, 677447, 792067, 912367, 1015171, 1162927... for n<=708993451 all elements of prime numbers Please help find exceptions if they are. ------------------ Number m has the interesting property. For each item found n this sequence, we have the value m = (2*n-1) * n. This value of m has the following property: p^(m-1)==1(mod m) where p=(2^i)-2 where (i - integer>=2) as called pseudo-prime numbers that satisfy Fermat's little theorem for any base of (2^i)-2 where i - integer>=2 ???? message in Russian http://dxdy.ru/post424085.html#p424085

 Similar Threads Thread Thread Starter Forum Replies Last Post Trilo Miscellaneous Math 25 2018-03-11 23:20 dh1 Information & Answers 8 2015-12-11 11:50 lidocorc Software 3 2008-12-03 15:12 swinster Software 2 2007-12-01 17:54 T.Rex Math 0 2004-10-26 21:37

All times are UTC. The time now is 03:55.

Mon Feb 6 03:55:48 UTC 2023 up 172 days, 1:24, 1 user, load averages: 1.14, 1.11, 1.03