mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Aliquot Sequences

Reply
 
Thread Tools
Old 2015-12-10, 18:50   #1
Dubslow
Basketry That Evening!
 
Dubslow's Avatar
 
"Bunslow the Bold"
Jun 2011
40<A<43 -89<O<-88

3×2,399 Posts
Default Python package for sequence analysis

I've put some final touches today on my code used to run the website and search for sequences that might mutate, etc, and put it together in python package form in PyPI, the Python Package Index. After installing pip (included by default with Python 3.4+, or otherwise in your standard package manager on Linuxes), you may now get my code with some variant of the following command:

Code:
pip install mfaliquot
For instance, on my computer and distro, here's how I would download it, together with a simple demonstration of the module on whether and how 541548:936 may mutate:

Code:
tmpu@Gravemind⌚1243 ~ ∰∂ pip3 install mfaliquot --user
Downloading/unpacking mfaliquot
  Downloading mfaliquot-0.0.1-py3-none-any.whl
Installing collected packages: mfaliquot
Successfully installed mfaliquot
Cleaning up...
tmpu@Gravemind⌚1243 ~ ∰∂ python3
Python 3.4.2 (default, Oct  8 2014, 10:45:20) 
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from mfaliquot import aliquot as aq
>>> res = aq.mutation_possible(aq.Factors('2^9 · 3^2'), 241413849295789277550538965117493054292130551238033452890627062088880427173192445000089149654782010178364256923601584820904417153263)
>>> print(aq.test_tau_to_str(res, 'C132', '\n'))
Assuming that C132 is made of 2 primes, then since it's 7 (mod 8), it's possible that tau(n)=3=1+2 via the following conditions: p1%8==3, p2%8==5.
Assuming that C132 is made of 2 primes, then since it's 15 (mod 16), it's possible that tau(n)=4=1+3 via the following conditions: p1%16==7, p2%16==9.
Assuming that C132 is made of 2 primes, then since it's 15 (mod 32), it's possible that tau(n)=5=1+4 via the following conditions: p1%32==1, p2%32==15.
Assuming that C132 is made of 2 primes, then since it's 47 (mod 64), it's possible that tau(n)=6=1+5 via the following conditions: p1%64==31, p2%64==49.
Assuming that C132 is made of 2 primes, then since it's 111 (mod 128), it's possible that tau(n)=7=1+6 via the following conditions: p1%128==63, p2%128==81.
Assuming that C132 is made of 2 primes, then since it's 239 (mod 256), it's possible that tau(n)=8=1+7 via the following conditions: p1%256==127, p2%256==145.
Assuming that C132 is made of 2 primes, then since it's 239 (mod 512), it's possible that tau(n)=9=1+8 via the following conditions: p1%512==17, p2%512==255.
Assuming that C132 is made of 3 primes, then since it's 7 (mod 8), it's possible that tau(n)=4=1+1+2 via the following conditions: p1%8==1, p2%8==3, p3%8==5.
Assuming that C132 is made of 3 primes, then since it's 15 (mod 16), it's possible that tau(n)=5=1+1+3 via the following conditions: p1%16==1, p2%16==7, p3%16==9; p1%16==7, p2%16==13, p3%16==13; p1%16==5, p2%16==5, p3%16==7.
Assuming that C132 is made of 3 primes, then since it's 15 (mod 32), it's possible that tau(n)=6=1+1+4 via the following conditions: p1%32==9, p2%32==15, p3%32==25; p1%32==5, p2%32==13, p3%32==15; p1%32==1, p2%32==1, p3%32==15; p1%32==15, p2%32==21, p3%32==29; p1%32==15, p2%32==17, p3%32==17.
Assuming that C132 is made of 3 primes, then since it's 15 (mod 16), it's possible that tau(n)=7=2+2+3 via the following conditions: p1%16==3, p2%16==3, p3%16==7; p1%16==7, p2%16==11, p3%16==11.
Assuming that C132 is made of 3 primes, then since it's 47 (mod 64), it's possible that tau(n)=7=1+1+5 via the following conditions: p1%64==13, p2%64==31, p3%64==53; p1%64==29, p2%64==31, p3%64==37; p1%64==25, p2%64==25, p3%64==31; p1%64==21, p2%64==31, p3%64==45; p1%64==31, p2%64==57, p3%64==57; p1%64==9, p2%64==31, p3%64==41; p1%64==1, p2%64==31, p3%64==49; p1%64==5, p2%64==31, p3%64==61; p1%64==17, p2%64==31, p3%64==33.
Assuming that C132 is made of 3 primes, then since it's 111 (mod 128), it's possible that tau(n)=8=1+1+6 via the following conditions: p1%128==63, p2%128==101, p3%128==125; p1%128==25, p2%128==63, p3%128==121; p1%128==21, p2%128==63, p3%128==77; p1%128==37, p2%128==61, p3%128==63; p1%128==1, p2%128==63, p3%128==81; p1%128==29, p2%128==63, p3%128==69; p1%128==63, p2%128==109, p3%128==117; p1%128==33, p2%128==49, p3%128==63; p1%128==41, p2%128==63, p3%128==105; p1%128==9, p2%128==9, p3%128==63; p1%128==63, p2%128==97, p3%128==113; p1%128==5, p2%128==63, p3%128==93; p1%128==57, p2%128==63, p3%128==89; p1%128==63, p2%128==73, p3%128==73; p1%128==13, p2%128==63, p3%128==85; p1%128==17, p2%128==63, p3%128==65; p1%128==45, p2%128==53, p3%128==63.
Assuming that C132 is made of 3 primes, then since it's 15 (mod 32), it's possible that tau(n)=8=2+2+4 via the following conditions: p1%32==15, p2%32==19, p3%32==27; p1%32==3, p2%32==11, p3%32==15.
Assuming that C132 is made of 3 primes, then since it's 239 (mod 256), it's possible that tau(n)=9=1+1+7 via the following conditions: p1%256==101, p2%256==127, p3%256==189; p1%256==33, p2%256==113, p3%256==127; p1%256==5, p2%256==29, p3%256==127; p1%256==37, p2%256==127, p3%256==253; p1%256==13, p2%256==127, p3%256==149; p1%256==1, p2%256==127, p3%256==145; p1%256==9, p2%256==73, p3%256==127; p1%256==127, p2%256==137, p3%256==201; p1%256==17, p2%256==127, p3%256==129; p1%256==121, p2%256==127, p3%256==217; p1%256==21, p2%256==127, p3%256==141; p1%256==127, p2%256==181, p3%256==237; p1%256==127, p2%256==161, p3%256==241; p1%256==41, p2%256==41, p3%256==127; p1%256==89, p2%256==127, p3%256==249; p1%256==127, p2%256==153, p3%256==185; p1%256==49, p2%256==97, p3%256==127; p1%256==45, p2%256==117, p3%256==127; p1%256==53, p2%256==109, p3%256==127; p1%256==93, p2%256==127, p3%256==197; p1%256==127, p2%256==173, p3%256==245; p1%256==127, p2%256==193, p3%256==209; p1%256==127, p2%256==177, p3%256==225; p1%256==65, p2%256==81, p3%256==127; p1%256==127, p2%256==133, p3%256==157; p1%256==25, p2%256==57, p3%256==127; p1%256==77, p2%256==85, p3%256==127; p1%256==105, p2%256==127, p3%256==233; p1%256==127, p2%256==205, p3%256==213; p1%256==61, p2%256==127, p3%256==229; p1%256==69, p2%256==127, p3%256==221; p1%256==125, p2%256==127, p3%256==165; p1%256==127, p2%256==169, p3%256==169.
Assuming that C132 is made of 3 primes, then since it's 47 (mod 64), it's possible that tau(n)=9=2+2+5 via the following conditions: p1%64==27, p2%64==31, p3%64==35; p1%64==19, p2%64==31, p3%64==43; p1%64==11, p2%64==31, p3%64==51; p1%64==3, p2%64==31, p3%64==59.
Better documentation is on my list of things to do, though
Code:
>>> from mfaliquot import aliquot as aq
>>> help(aq)
should be a decent way to get started.

Last fiddled with by Dubslow on 2015-12-10 at 18:53
Dubslow is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
being able to use a latex package wildrabbitt Software 7 2018-01-12 19:46
Debian package of mprime Matt Linux 1 2007-02-22 22:36
Improvements for the CWI NFS software package Istari Factoring 30 2005-07-12 20:20
Free C++ package and looking for a bit of help. Uncwilly Programming 9 2005-03-04 13:37
mprime RPM package for linux gbvalor Software 15 2004-01-04 11:51

All times are UTC. The time now is 17:35.

Wed Oct 28 17:35:57 UTC 2020 up 48 days, 14:46, 2 users, load averages: 2.04, 2.21, 2.31

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.