mersenneforum.org Conjectured compositeness tests for N=k⋅2n±c by Predrag
 Register FAQ Search Today's Posts Mark Forums Read

 2015-09-09, 20:41 #23 T.Rex     Feb 2004 France 2×461 Posts Here is a modified code that shows the pseudoprimes such that N=0 mod(2*c-1) : Code: CEk2c(k,c,g)= { a=6; h=a/2; if(c>0,s=1,s=-1;c*=-1); for(n=c<<1+1,g, N=k<
2015-09-10, 06:25   #24
LaurV
Romulan Interpreter

"name field"
Jun 2011
Thailand

24×613 Posts

Quote:
 Originally Posted by Batalov Tigger first claims: 'Tiggers eat evertyhing'.
Disclaimer: The similarity with the avatar is coincidental...

2015-09-11, 19:13   #25
T.Rex

Feb 2004
France

2×461 Posts

Quote:
 Originally Posted by LaurV Disclaimer: The similarity with the avatar is coincidental...
I'm Hobbes ! A real Tiger !! Be afraid ! And read again all Watterson's books in order to remember how dangerous I can be !!

;)

 2015-09-16, 17:49 #26 primus   Jul 2014 Montenegro 2·13 Posts
 2015-09-16, 18:22 #27 Batalov     "Serge" Mar 2008 Phi(4,2^7658614+1)/2 3·5·641 Posts Proving these endless copy-pasted conjectures in one direction (i.e. is this a PRP test? -- the 'if' conjectures) is an exercise in copy-pasting the same solution over and over again. This direction is obvious. Maybe mathlove likes calligraphy, or copy-pasting, or the "bounty points" that it brings ("This question has an open bounty worth +50 reputation from MathBot ending in 3 days."). The 'iff' conjectures are almost obviously false - and in many previous cases already proven false by a counterexample. Obviously it is a moot point to ask if you ever get tired of copy-pasting. Bots don't get tired.
 2015-10-16, 19:02 #28 T.Rex     Feb 2004 France 2×461 Posts I still think that an algorithm that produces only 3 kinds of numbers: 1) primes 2) composite numbers like the ones here below (only 1 small divisor equal to 2b-1) 3) cases in bold (like 561*2^3+1) which are all of the form: 3*k*2^3+1. deserves some study. About the number a+b=699*2^8+3 which is said "Pseudoprime", we have: 3|a and 3|b , so that's stupid. a and b must be coprimes. Code:  for(k=500,600,for(c=1,100,CEk2c(2*k+1,2*c+1,200))) 1015*2^36+17 : Mat([2113644511729, 1]) 1015*2^194+57 : Mat([225531265890884282311268186355956864153766045172778585153609, 1]) 1055*2^99+17 : Mat([20263202776375485129985180025329, 1]) 1073*2^135+17 : Mat([1416234587951193100785264305548750704067057, 1]) 1077*2^83+25 : Mat([212573568608156019780988009, 1]) 1085*2^57+17 : Mat([4738332698857685489, 1]) 1085*2^167+17 : Mat([6150707496742902947882659077807193508176239744500209, 1]) 1109*2^169+41 : Mat([10245090391229448446659233055493422578083898090890329, 1]) 1151*2^37+17 : Mat([4793704104433, 1]) 1159*2^52+17 : Mat([158171877821891057, 1]) 1159*2^82+17 : Mat([169835760597982450119328241, 1]) 1163*2^151+17 : Mat([100599337370729172222471914089076535976553595377, 1]) 1167*2^196+25 : Mat([2391960073533471494333507349186398924927820017531274539281513, 1]) 1175*2^135+41 : Mat([631832938085298085245574579725159740777561, 1]) 1189*2^124+17 : Mat([766279799751886047458243197417371976177, 1]) ... 1203*2^53+25 : Mat([221135932723539049, 1]) 1205*2^137+41 : Mat([2591859371549903634794612318532144638764121, 1]) 1209*2^100+25 : Mat([31277338279100598906316615822441, 1]) ... ? for(k=1000,1100,for(c=1,200,CEk2c(2*k+1,2*c+1,400))) 2001*2^59+25 : Mat([23540774803247967337, 1]) 2005*2^46+17 : Mat([4275434305339889, 1]) 2005*2^66+17 : Mat([4483117802156078907889, 1]) 2011*2^78+17 : Mat([18417801691250145987379697, 1]) 2015*2^83+17 : Mat([590541945823873402917077489, 1]) 2035*2^110+41 : Mat([32612111441723377234751728487539801, 1]) 2039*2^185+89 : Mat([564928073731172408080030660042391941315002769741444490281, 1]) 2047*2^324+33 : Mat([1076274575392025338747719244930233397807196592557309100327777026759897545519500604528493142636103649, 1]) 2047*2^348+33 : Mat([18056891026660293785643655279551430645425263587797967154964785977788581259050493854305107608524720309143521, 1]) 2047*2^360+33 : Mat([73961025645200563345996412025042659923661879655620473466735763365022028837070822827233720764517254386251859937, 1]) 2047*2^390+41 : Mat([63728123799719110279533981301723636510813413362285644902155185460536092812843290960248891278024234916923391601902658649, 1]) 2047*2^312+137 : Mat([62562463692337782432786879471856015032505382286859950493383616231857883737880196970824796702713, 1]) 2075*2^357+41 : Mat([7520410276629172759059679380151040635500835322507351437835846861002058220853105741029591700074683732702569561, 1]) 2081*2^169+41 : Mat([19224556450990515976102672667702265450849947634934873, 1]) 2081*2^385+41 : Mat([2024582096165355833105004504898737292058541664736755420148157989487292518678659142774150322874457023420212169082184793, 1]) 2111*2^149+17 : Mat([45650301201549716801727904265270973225817850353, 1]) 2111*2^269+17 : Mat([60679658373113666973114702966744324276783274698731453145161221545910673326056391153, 1]) 2113*2^54+17 : Mat([1153467395470770673, 1]) 2125*2^248+41 : Mat([11866232138758531793744615313631452748273472097535021150841404611150434051161, 1]) 2127*2^92+25 : Mat([214946813351837048547790793833, 1]) 2131*2^88+41 : Mat([8142130320114646190771709017, 1]) 2135*2^97+41 : Mat([4176595727603811376844847752281, 1]) 2147*2^333+17 : Mat([1138430862087060994334002977362795896100182974091570206304516240475677354977226692645062494804484014577, 1]) 2149*2^112+17 : Mat([338128665120949835567031412469514737, 1]) 2149*2^132+17 : Mat([354553603157865094779535530361633884324337, 1]) 2149*2^292+57 : Mat([151327098767381450476731532922834405008974197247929238198875339659242443763530509595828297, 1]) 2161*2^50+17 : Mat([73729384808694257, 1]) 2161*2^170+17 : Mat([98003162399715489551147843444360148727512288205455857, 1]) 2161*2^85+33 : Mat([1286148281199859025988945889, 1]) 2161*2^253+33 : Mat([481205201618923650596801728084181863213300840120094728633207382771346679138273, 1]) 2171*2^262+105 : Mat([76979024148275892138433717421278146740501171049678289616738729915767855907613721, 1]) 2177*2^89+17 : Mat([40833264629155649370536264177, 1]) 2177*2^117+57 : Mat([3201028038521860459415473418396360777, 1]) 2177*2^191+65 : Mat([52966087123786062104149277419856937162228014738752725327809, 1]) 2195*2^35+17 : Mat([2285443203569, 1]) 2201*2^274+105 : Mat([319663145319140975261194352341399903821765658848217635038519670591756005662130973721, 1])`

 Similar Threads Thread Thread Starter Forum Replies Last Post jnml Miscellaneous Math 10 2018-01-27 16:20 primus Miscellaneous Math 1 2014-10-12 09:25 primus Computer Science & Computational Number Theory 16 2014-08-15 01:15 T.Rex Math 75 2007-09-04 07:53 Holmes Math 1 2005-05-13 17:18

All times are UTC. The time now is 22:39.

Wed Dec 1 22:39:20 UTC 2021 up 131 days, 17:08, 1 user, load averages: 1.07, 1.26, 1.36

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.