![]() |
![]() |
#12 | |
Feb 2017
Nowhere
24·271 Posts |
![]() Quote:
![]() Right. So, q2 divides 2q-1 - 1, and the multiplicative order of 2 (mod q2) is a prime divisor p of q - 1. This is not true of the two known Wieferich primes to the base 2: The multiplicative order of 2 (mod 10932) is 1092/3 = 346, and the multiplicative order of 2 (mod 35112) is 3510/2 = 1755. Neither 346 nor 1755 is prime. However, to the base 3, we have the small example 35 - 1 = 242 = 2 * 112, so that 35 == 1 (mod 112). |
|
![]() |
![]() |
![]() |
#13 |
Feb 2018
11000002 Posts |
![]()
I tell us a secret. Dont waste time looking for. They are all square free.
The Mersenne numbers, the Wagstaff numbers, and the Fermat numbers. That follows of the properties of the M() function. |
![]() |
![]() |
![]() |
#14 |
"Forget I exist"
Jul 2009
Dumbassville
26·131 Posts |
![]()
We get for free that if they aren't then the divisor that opposes the square are 7 mod 8. Doesn't help much though.edit: okay it limits the number of arrangements to n for 2n+1 7 mod 8 divisors.
Last fiddled with by science_man_88 on 2018-03-05 at 03:17 |
![]() |
![]() |
![]() |
#15 | ||||||
Feb 2017
Nowhere
10F016 Posts |
![]() Quote:
In the Initial post to the thread A useful function. you wrote: Quote:
Quote:
Quote:
Quote:
Quote:
So your M(1093^2) = 1093*346 is the multiplicative order of 2 (mod 1093^3). Last fiddled with by wblipp on 2018-03-06 at 13:53 Reason: fixed link for Post #11 |
||||||
![]() |
![]() |
![]() |
#16 |
Feb 2018
25×3 Posts |
![]()
I think axiomatic definition for M() is enough, but talking on code approach, I post the pseudocode on:
http://www.mersenneforum.org/showpos...7&postcount=19 I try to post also the .exe, but i find a security rule. Can be "The Staff" can leave me to post here the full C-code of M(). A few lines of C for 64 bits n. Thanks to all for your interest on my M() function. Really I think is something like a good step. And happy to share it here and now. JM M |
![]() |
![]() |
![]() |
#17 |
Feb 2018
25×3 Posts |
![]()
On the zip the C code.
gcc -o .. |
![]() |
![]() |
![]() |
#18 | |
Feb 2017
Nowhere
10000111100002 Posts |
![]()
Pfui. In this post, I listed 20 primes p less than 200 for which your "definition" of M(p) was ambiguous. They could be any value divisible by the multiplicative order of 2 (mod p), and dividing p-1.
I repost the values here for ease of reference: Quote:
I'm not a programmer. But from my limited experience with computer programs, being able to explain the algorithm is easier than -- indeed, a prerequisite for -- writing the program. |
|
![]() |
![]() |
![]() |
#19 |
Feb 2018
25×3 Posts |
![]()
Well. Step to step, Doc.
I think M() can have one full correct axiomatic definition. BUT ALSO I post the pseudocode, at other forum. And the C code here. The theory of the M function start solving the question:¿ whats the distance from a prime p to any f(i) series?. Answer: f(d) mod p. After i find what i named "t-serie". Here is "n+e=(2^g)e'". Any t-serie gives a integral equation. Here is: (eEnd)(2^M)-(eStart) = n*D. The C source is only the resolution of the tserie. This is, start n+1=(2^g)e',n+e'=(2^g)e'',until you get e=1. ¿ always you back to one ? Yes. ¿ is something like Collatz ending always on 1 ? Yes, is the same thing. I posted also about it. If you compile, links, and execute the C code, you get the right results. For a practical user, what makes the M() is put any prime on their place. I think cpu time is best used computing M, that making trials on dividers. The tserie is like the Touring Machine. Slow, but with a strong theory. Can be someone can make the step from my theorical tserie to a faster language. JM M Last fiddled with by JM Montolio A on 2018-03-06 at 18:06 |
![]() |
![]() |
![]() |
#20 |
Feb 2018
25·3 Posts |
![]()
I put some trace on the code.
n 3 n 3 + e 1 = (2^g 2)(e' 1) n 3 M 2 Dbit 1 D 1 n 5 n 5 + e 1 = (2^g 1)(e' 3) n 5 + e 3 = (2^g 3)(e' 1) n 5 M 4 Dbit 2 D 3 n 7 n 7 + e 1 = (2^g 3)(e' 1) n 7 M 3 Dbit 1 D 1 n 9 n 9 + e 1 = (2^g 1)(e' 5) n 9 + e 5 = (2^g 1)(e' 7) n 9 + e 7 = (2^g 4)(e' 1) n 9 M 6 Dbit 3 D 7 n 11 n 11 + e 1 = (2^g 2)(e' 3) n 11 + e 3 = (2^g 1)(e' 7) n 11 + e 7 = (2^g 1)(e' 9) n 11 + e 9 = (2^g 2)(e' 5) n 11 + e 5 = (2^g 4)(e' 1) n 11 M 10 Dbit 5 D 93 n 13 n 13 + e 1 = (2^g 1)(e' 7) n 13 + e 7 = (2^g 2)(e' 5) n 13 + e 5 = (2^g 1)(e' 9) n 13 + e 9 = (2^g 1)(e' 11) n 13 + e 11 = (2^g 3)(e' 3) n 13 + e 3 = (2^g 4)(e' 1) n 13 M 12 Dbit 6 D 315 n 15 n 15 + e 1 = (2^g 4)(e' 1) n 15 M 4 Dbit 1 D 1 n 17 n 17 + e 1 = (2^g 1)(e' 9) n 17 + e 9 = (2^g 1)(e' 13) n 17 + e 13 = (2^g 1)(e' 15) n 17 + e 15 = (2^g 5)(e' 1) n 17 M 8 Dbit 4 D 15 n 19 n 19 + e 1 = (2^g 2)(e' 5) n 19 + e 5 = (2^g 3)(e' 3) n 19 + e 3 = (2^g 1)(e' 11) n 19 + e 11 = (2^g 1)(e' 15) n 19 + e 15 = (2^g 1)(e' 17) n 19 + e 17 = (2^g 2)(e' 9) n 19 + e 9 = (2^g 2)(e' 7) n 19 + e 7 = (2^g 1)(e' 13) n 19 + e 13 = (2^g 5)(e' 1) n 19 M 18 Dbit 9 D 13797 n 21 n 21 + e 1 = (2^g 1)(e' 11) n 21 + e 11 = (2^g 5)(e' 1) n 21 M 6 Dbit 2 D 3 n 23 n 23 + e 1 = (2^g 3)(e' 3) n 23 + e 3 = (2^g 1)(e' 13) n 23 + e 13 = (2^g 2)(e' 9) n 23 + e 9 = (2^g 5)(e' 1) n 23 M 11 Dbit 4 D 89 n 25 n 25 + e 1 = (2^g 1)(e' 13) n 25 + e 13 = (2^g 1)(e' 19) n 25 + e 19 = (2^g 2)(e' 11) n 25 + e 11 = (2^g 2)(e' 9) n 25 + e 9 = (2^g 1)(e' 17) n 25 + e 17 = (2^g 1)(e' 21) n 25 + e 21 = (2^g 1)(e' 23) n 25 + e 23 = (2^g 4)(e' 3) n 25 + e 3 = (2^g 2)(e' 7) n 25 + e 7 = (2^g 5)(e' 1) n 25 M 20 Dbit 10 D 41943 n 27 n 27 + e 1 = (2^g 2)(e' 7) n 27 + e 7 = (2^g 1)(e' 17) n 27 + e 17 = (2^g 2)(e' 11) n 27 + e 11 = (2^g 1)(e' 19) n 27 + e 19 = (2^g 1)(e' 23) n 27 + e 23 = (2^g 1)(e' 25) n 27 + e 25 = (2^g 2)(e' 13) n 27 + e 13 = (2^g 3)(e' 5) n 27 + e 5 = (2^g 5)(e' 1) n 27 M 18 Dbit 9 D 9709 n 29 n 29 + e 1 = (2^g 1)(e' 15) n 29 + e 15 = (2^g 2)(e' 11) n 29 + e 11 = (2^g 3)(e' 5) n 29 + e 5 = (2^g 1)(e' 17) n 29 + e 17 = (2^g 1)(e' 23) n 29 + e 23 = (2^g 2)(e' 13) n 29 + e 13 = (2^g 1)(e' 21) n 29 + e 21 = (2^g 1)(e' 25) n 29 + e 25 = (2^g 1)(e' 27) n 29 + e 27 = (2^g 3)(e' 7) n 29 + e 7 = (2^g 2)(e' 9) n 29 + e 9 = (2^g 1)(e' 19) n 29 + e 19 = (2^g 4)(e' 3) n 29 + e 3 = (2^g 5)(e' 1) n 29 M 28 Dbit 14 D 9256395 n 31 n 31 + e 1 = (2^g 5)(e' 1) n 31 M 5 Dbit 1 D 1 |
![]() |
![]() |
![]() |
#21 |
Feb 2018
25×3 Posts |
![]()
"so far, failed,.... Dr. Sarcasticus."
n 3 M 2 Dbit 1 D 1 n 5 M 4 Dbit 2 D 3 n 7 M 3 Dbit 1 D 1 n 9 M 6 Dbit 3 D 7 n 11 M 10 Dbit 5 D 93 n 13 M 12 Dbit 6 D 315 n 15 M 4 Dbit 1 D 1 n 17 M 8 Dbit 4 D 15 n 19 M 18 Dbit 9 D 13797 n 21 M 6 Dbit 2 D 3 n 23 M 11 Dbit 4 D 89 n 25 M 20 Dbit 10 D 41943 n 27 M 18 Dbit 9 D 9709 n 29 M 28 Dbit 14 D 9256395 n 31 M 5 Dbit 1 D 1 n 33 M 10 Dbit 5 D 31 n 35 M 12 Dbit 5 D 117 n 37 M 36 Dbit 18 D 1857283155 n 39 M 12 Dbit 4 D 105 n 41 M 20 Dbit 10 D 25575 n 43 M 14 Dbit 7 D 381 n 45 M 12 Dbit 5 D 91 n 47 M 23 Dbit 9 D 178481 n 49 M 21 Dbit 10 D 42799 n 51 M 8 Dbit 2 D 5 n 53 M 52 Dbit 26 D 84973577874915 n 55 M 20 Dbit 8 D 19065 n 57 M 18 Dbit 9 D 4599 n 59 M 58 Dbit 29 D 4885260612740877 n 61 M 60 Dbit 30 D 18900352534538475 n 63 M 6 Dbit 1 D 1 n 65 M 12 Dbit 6 D 63 n 67 M 66 Dbit 33 D 1101298153654301589 n 69 M 22 Dbit 11 D 60787 n 71 M 35 Dbit 14 D 483939977 n 73 M 9 Dbit 3 D 7 n 75 M 20 Dbit 9 D 13981 n 77 M 30 Dbit 15 D 13944699 n 79 M 39 Dbit 17 D 6958934353 n 81 M 54 Dbit 27 D 222399981598543 n 83 M 82 Dbit 41 D 0 n 85 M 8 Dbit 2 D 3 n 87 M 28 Dbit 11 D 3085465 n 89 M 11 Dbit 4 D 23 n 91 M 12 Dbit 4 D 45 n 93 M 10 Dbit 3 D 11 n 95 M 36 Dbit 14 D 723362913 n 97 M 48 Dbit 24 D 2901803883615 n 99 M 30 Dbit 15 D 10845877 n 101 M 100 Dbit 50 D 0 n 103 M 51 Dbit 23 D 21862134113449 n 105 M 12 Dbit 4 D 39 n 107 M 106 Dbit 53 D 0 n 109 M 36 Dbit 18 D 630453915 n 111 M 36 Dbit 14 D 619094385 n 113 M 28 Dbit 14 D 2375535 n 115 M 44 Dbit 19 D 152975530821 n 117 M 12 Dbit 3 D 35 n 119 M 24 Dbit 9 D 140985 n 121 M 110 Dbit 55 D 0 n 123 M 20 Dbit 6 D 8525 n 125 M 100 Dbit 50 D 0 n 127 M 7 Dbit 1 D 1 n 129 M 14 Dbit 7 D 127 n 131 M 130 Dbit 65 D 0 n 133 M 18 Dbit 8 D 1971 n 135 M 36 Dbit 17 D 509033161 n 137 M 68 Dbit 34 D 2154364271382137415 n 139 M 138 Dbit 69 D 0 n 141 M 46 Dbit 23 D 499069107643 n 143 M 60 Dbit 25 D 8062388144103825 n 145 M 28 Dbit 14 D 1851279 n 147 M 42 Dbit 20 D 29918683749 n 149 M 148 Dbit 74 D 0 n 151 M 15 Dbit 5 D 217 n 153 M 24 Dbit 10 D 109655 n 155 M 20 Dbit 8 D 6765 n 157 M 52 Dbit 26 D 28685347945035 n 159 M 52 Dbit 21 D 28324525958305 n 161 M 33 Dbit 15 D 53353631 n 163 M 162 Dbit 81 D 0 n 165 M 20 Dbit 7 D 6355 n 167 M 83 Dbit 36 D 0 n 169 M 156 Dbit 78 D 0 n 171 M 18 Dbit 9 D 1533 n 173 M 172 Dbit 86 D 0 n 175 M 60 Dbit 29 D 6588122883467697 n 177 M 58 Dbit 29 D 1628420204246959 n 179 M 178 Dbit 89 D 0 n 181 M 180 Dbit 90 D 0 n 183 M 60 Dbit 26 D 6300117511512825 n 185 M 36 Dbit 18 D 371456631 n 187 M 40 Dbit 21 D 5879741325 n 189 M 18 Dbit 7 D 1387 n 191 M 95 Dbit 41 D 0 n 193 M 96 Dbit 48 D 0 n 195 M 12 Dbit 3 D 21 n 197 M 196 Dbit 98 D 0 n 199 M 99 Dbit 45 D 0 n 201 M 66 Dbit 33 D 367099384551433863 n 203 M 84 Dbit 42 D 0 n 205 M 20 Dbit 10 D 5115 n 207 M 66 Dbit 33 D 356458822680377809 n 209 M 90 Dbit 45 D 0 n 211 M 210 Dbit 105 D 0 n 213 M 70 Dbit 35 D 5542683665339959171 n 215 M 28 Dbit 9 D 1248537 n 217 M 15 Dbit 5 D 151 n 219 M 18 Dbit 6 D 1197 n 221 M 24 Dbit 7 D 75915 n 223 M 37 Dbit 13 D 616318177 n 225 M 60 Dbit 29 D 5124095576030431 n 227 M 226 Dbit 113 D 0 n 229 M 76 Dbit 38 D 0 n 231 M 30 Dbit 12 D 4648233 n 233 M 29 Dbit 10 D 2304167 n 235 M 92 Dbit 41 D 0 n 237 M 78 Dbit 34 D 0 n 239 M 119 Dbit 52 D 0 n 241 M 24 Dbit 12 D 69615 n 243 M 162 Dbit 81 D 0 n 245 M 84 Dbit 41 D 0 n 247 M 36 Dbit 15 D 278216505 n 249 M 82 Dbit 41 D 0 n 251 M 50 Dbit 25 D 4485656999373 n 253 M 110 Dbit 52 D 0 n 255 M 8 Dbit 1 D 1 n 257 M 16 Dbit 8 D 255 n 259 M 36 Dbit 15 D 265326165 n 261 M 84 Dbit 39 D 0 n 263 M 131 Dbit 59 D 0 n 265 M 52 Dbit 26 D 16994715574983 n 267 M 22 Dbit 10 D 15709 n 269 M 268 Dbit 134 D 0 n 271 M 135 Dbit 62 D 0 n 273 M 12 Dbit 4 D 15 n 275 M 20 Dbit 8 D 3813 n 277 M 92 Dbit 46 D 0 n 279 M 30 Dbit 13 D 3848537 n 281 M 70 Dbit 35 D 4201393668033492183 n 283 M 94 Dbit 47 D 0 n 285 M 36 Dbit 18 D 241120971 n 287 M 60 Dbit 26 D 4017148099675425 n 289 M 136 Dbit 68 D 0 n 291 M 48 Dbit 21 D 967267961205 n 293 M 292 Dbit 146 D 0 n 295 M 116 Dbit 54 D 0 n 297 M 90 Dbit 45 D 0 n 299 M 132 Dbit 66 D 0 n 301 M 42 Dbit 18 D 14611450203 n 303 M 100 Dbit 45 D 0 n 305 M 60 Dbit 30 D 3780070506907695 n 307 M 102 Dbit 51 D 0 n 309 M 102 Dbit 46 D 0 n 311 M 155 Dbit 68 D 0 n 313 M 156 Dbit 78 D 0 n 315 M 12 Dbit 3 D 13 n 317 M 316 Dbit 158 D 0 n 319 M 140 Dbit 65 D 0 n 321 M 106 Dbit 53 D 0 n 323 M 72 Dbit 37 D 0 n 325 M 60 Dbit 30 D 3547450783405683 n 327 M 36 Dbit 13 D 210151305 n 329 M 69 Dbit 34 D 1794212189540138759 n 331 M 30 Dbit 15 D 3243933 n 333 M 36 Dbit 14 D 206364795 n 335 M 132 Dbit 57 D 0 n 337 M 21 Dbit 7 D 6223 n 339 M 28 Dbit 8 D 791845 n 341 M 10 Dbit 2 D 3 n 343 M 147 Dbit 73 D 0 n 345 M 44 Dbit 22 D 50991843607 n 347 M 346 Dbit 173 D 0 n 349 M 348 Dbit 174 D 0 n 351 M 36 Dbit 15 D 195781985 n 353 M 88 Dbit 44 D 0 n 355 M 140 Dbit 70 D 0 n 357 M 24 Dbit 10 D 46995 n 359 M 179 Dbit 80 D 0 n 361 M 342 Dbit 171 D 0 n 363 M 110 Dbit 55 D 0 n 365 M 36 Dbit 17 D 188272539 n 367 M 183 Dbit 87 D 0 n 369 M 60 Dbit 26 D 3124448521969775 n 371 M 156 Dbit 78 D 0 n 373 M 372 Dbit 186 D 0 n 375 M 100 Dbit 49 D 0 n 377 M 84 Dbit 42 D 0 n 379 M 378 Dbit 189 D 0 n 381 M 14 Dbit 4 D 43 n 383 M 191 Dbit 87 D 0 n 385 M 60 Dbit 30 D 2994601310667135 n 387 M 42 Dbit 21 D 11364461269 n 389 M 388 Dbit 194 D 0 n 391 M 88 Dbit 39 D 0 n 393 M 130 Dbit 65 D 0 n 395 M 156 Dbit 78 D 0 n 397 M 44 Dbit 22 D 44312811195 n 399 M 18 Dbit 4 D 657 |
![]() |
![]() |
![]() |
#22 |
"Sam"
Nov 2016
32610 Posts |
![]() |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Square Riesel numbers < 3896845303873881175159314620808887046066972469809^2 | Citrix | Math | 8 | 2017-04-10 10:50 |
Square-freeness of Mersenne numbers | Qubit | Math | 2 | 2014-05-02 23:51 |
square free Mersenne Numbers? | kurtulmehtap | Math | 0 | 2012-09-17 13:04 |
Finding the square root of a large mersenne number | Fusion_power | Math | 29 | 2010-10-14 17:05 |
Square numbers and binary representation | ET_ | Miscellaneous Math | 40 | 2010-06-06 12:55 |