Go Back > Prime Search Projects > No Prime Left Behind

Thread Tools
Old 2012-11-21, 05:48   #177
Romulan Interpreter
LaurV's Avatar
Jun 2011

100101001110012 Posts

Originally Posted by AMDave View Post
However there is no discernible pattern for whether the mod6 'seed' is 1 above or 1 below.
Well, if you have nothing better to do, you can establish some pattern, not where the primes are, but where they are not. For example, taking in 6k-1 some k=1 (mod 5) you get 30k+5 which is always divisible by 5, therefore composite (ex: 35, 65, 95, 125, etc), and symmetrical, 30k-5 (which is 6k+1 with convenient renaming of k) (ex: 25, 55, 85, 115, 145, etc). You can repeat this for 7 (42k+/-7, ex: 35, 49, 77, 91, 119, 133), for 11 (66k+/-11, ex: 55, 77, 121, 143, 187), etc, and get a "pattern" with "where the primes are not", in the (+/-1 mod 6) distribution. They repeat after 6*5*7*11 lines
LaurV is offline   Reply With Quote
Old 2012-11-21, 08:16   #178
AMDave's Avatar
Jan 2006
deep in a while-loop

2×7×47 Posts

I will have to take your word for it. I am out-geeked on this subject
If there is an upper/lower pattern to the mod6-adjacent as you say, then that is interesting.
I have to then pose the next (and killer) question:
Is there then also a predictive pattern to the mod6-adjacent when including the mod-6-non-adjacents?
I don't see one there.
In fact I am now seeing spots and colours and need to withdraw from this thread. My own question is beyond me atm

Last fiddled with by AMDave on 2012-11-21 at 09:03
AMDave is offline   Reply With Quote

Thread Tools

Similar Threads
Thread Thread Starter Forum Replies Last Post
Some old stuff Batalov Miscellaneous Math 1 2017-01-27 04:56
Stuff for sale fivemack Lounge 12 2011-06-12 11:28
useful stuff paulunderwood Linux 3 2005-12-05 22:18
Free stuff... Xyzzy Software 6 2004-10-06 13:35
Extra Stuff... Xyzzy Lounge 11 2003-09-15 23:22

All times are UTC. The time now is 04:57.

Mon Jun 14 04:57:42 UTC 2021 up 17 days, 2:44, 0 users, load averages: 2.28, 1.68, 1.53

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.