mersenneforum.org Mersenne Primes and Benford's law
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2020-09-17, 18:39 #1 kriesel     "TF79LL86GIMPS96gpu17" Mar 2017 US midwest 26·101 Posts Mersenne Primes and Benford's law Someone mentioned Benford's law to me recently, and I decided to see how well the known Mersenne primes followed it. It turns out that the exponents follow it pretty well. The number of decimal digits in the known Mersenne primes do not though. Six is substantially more common a leading digit than expected. And that's the case whether the number of decimal digits is itself expressed in decimal, or in hexadecimal. Any ideas why? See https://www.mersenneforum.org/showpo...35&postcount=6 for details.
 2020-09-17, 18:59 #2 Uncwilly 6809 > 6502     """"""""""""""""""" Aug 2003 101×103 Posts 24×32×73 Posts Why have you divide what should be 1 post into 2 parts in 2 threads? I am tempted to fix this (absent a compelling reason).
 2020-09-17, 19:01 #3 Uncwilly 6809 > 6502     """"""""""""""""""" Aug 2003 101×103 Posts 24·32·73 Posts The answer is that small data sets are small. And random distribution is random and smooth as one might expect. Flipping a coin 1000 times will yield runs of 6 heads or tails in a row, etc.
2020-09-18, 01:51   #4
kriesel

"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest

194016 Posts

Quote:
 Originally Posted by Uncwilly Why have you divide what should be 1 post into 2 parts in 2 threads?
Relax, nothing nefarious. There is logic to what I do, whether it is apparent or not.
A reference post in my blog I can edit, extend, and correct indefinitely. The purpose of the blog is to house my reference posts and threads.
This avoids bloat from duplication, and stale or wrong content lingering.

The post beginning this thread is brief and serves a different purpose, asking about the math, in the hope that a skilled mathematician can illuminate us. I can not update a post here after one hour. It seemed to me not at the level fit for math or number theory threads, so it's here.

I've tried a few different statistical tests on the observed distributions, and they are in considerable disagreement as to whether the variations could have been due to chance.
Pearson's, m and d.

Benford's law has scale invariance. Number size expressed in digit counts of different bases (2, 10, 16) seem like unit changes, which don't affect Benford's law. Over 50 samples or even 30 is workable in some statistics. https://en.wikipedia.org/wiki/Studen...t-distribution

Last fiddled with by kriesel on 2020-09-18 at 02:16

 2020-09-18, 06:25 #5 pinhodecarlos     "Carlos Pinho" Oct 2011 Milton Keynes, UK 22×1,259 Posts You need to be careful about the sample size, there is a math reason to define it.
 2020-09-18, 12:12 #6 Dr Sardonicus     Feb 2017 Nowhere 2×3×312 Posts About the small sample size, me three. Benford's law is based on the theorem that, if α is a (positive) real irrational number, the fractional parts of α, 2*α, 3*α, etc are uniformly distributed in [0,1]. If N is "large," we would expect the fractional parts of k*α, k = 1 to N, to approximate a uniform distribution in [0,1] fairly well. I don't think you can say much about uniformity if you take 51 values of k between 2 and 82589933. Last fiddled with by Dr Sardonicus on 2020-09-18 at 12:18 Reason: Change symbol for positive real from z to α
2020-09-18, 18:26   #7
xilman
Bamboozled!

"𒉺𒌌𒇷𒆷𒀭"
May 2003
Down not across

101100000111002 Posts

Quote:
 Originally Posted by kriesel Relax, nothing nefarious. There is logic to what I do, whether it is apparent or not.
Though this be method, yet there is madness in't

2020-09-19, 01:08   #8
jwaltos

Apr 2012
Oh oh.

11·41 Posts

Quote:
 Originally Posted by kriesel Benford's law..how well the known Mersenne primes followed it... Any ideas why?
I have looked at both aspects independently..and you may want to look at Finch's reference texts for some insight. Following some of the papers on Benford's law and its justification leads to some very intricate and general statistical results. Rather than look at the numerical properties of the Mersenne primes, I've looked at the algebraic roots and justification for designating a Mersenne prime as such. Both aspects of your question can be appropriately combined and generalized when you are able to compare and contrast the mathematics and logic comprising both. Rather than asking "why" understanding the "how" first provides the foundation for the former. The "to a man with a hammer every problem looks like a nail" adage is something to be aware of. Looking at your question topologically will give it a different spin and complicate things due to the other mathematical baggage that comes with it but you should see a few things specifically more clearly and you can crunch the numbers to bring these connections into view.
Sorry for the diatribe and I really appreciate your posts regarding gpu's..good stuff!

Last fiddled with by Uncwilly on 2020-09-19 at 01:13 Reason: clarrity (uncwilly: fixed quote tag)

 2020-09-20, 09:31 #9 jwaltos     Apr 2012 Oh oh. 11×41 Posts kriesel, here's another "brick in the wall" for your question which again may provide some helpful insight: https://lance.fortnow.com/papers/files/alg.pdf Quoting from the paper: "3 External Structure In this section we list papers that prove theorems using the external structure of complexity theory. These theorems generally show that classes have certain closure properties based on their external algebraic structure. We feel that this study may prove more important as it may lead us to understand how to separate complexity classes. If two complexity classes do not have the same external algebraic structure then they cannot coincide." This is my emphasis on understanding the general nature of your question then ensuring your analysis properly coordinates the appropriate concepts. As usual, the freedom to create conceptual bridges may allow you to invent/discover something new.
 2021-09-15, 03:06 #10 T.Rex     Feb 2004 France 32×103 Posts I found this papier very interesting: https://faculty.math.illinois.edu/~j...nneBenford.pdf First, it seems to say that Mersenne primes are random. Second, it means that looking at Mersenne exponents starting with 1,2,3, or 4 generates 3 times more primes than exponents starting with 5,6,7,8, or 9. Thus, should the GIMPS look first at these 1-4..... exponents? Code: 1 13 2 10 3 7 4 5 5 2 6 3 7 2 8 3 9 2 Last fiddled with by axn on 2021-09-15 at 10:35 Reason: duplicate url
2021-09-15, 03:37   #11
slandrum

Jan 2021
California

2×191 Posts

Quote:
 Originally Posted by T.Rex I found this papier very interesting: https://faculty.math.illinois.edu/~j...nneBenford.pdfhttps://faculty.math.illinois.edu/~j...nneBenford.pdf First, it seems to say that Mersenne primes are random. Second, it means that looking at Mersenne exponents starting with 1,2,3, or 4 generates 3 times more primes than exponents starting with 5,6,7,8, or 9. Thus, should the GIMPS look first at these 1-4..... exponents? Code: 1 13 2 10 3 7 4 5 5 2 6 3 7 2 8 3 9 2
That's due to logarithmic bias. You take any sequence that increases exponentially (which the mersenne exponents do approximately) and you'll see a similar pattern in the leading digit. It actually gives no indication about where you can find the next mersenne prime, other than they get scarcer as the exponents get larger.

Last fiddled with by slandrum on 2021-09-15 at 03:40

 Similar Threads Thread Thread Starter Forum Replies Last Post carpetpool Miscellaneous Math 3 2017-08-10 13:47 emily Math 34 2017-07-16 18:44 siegert81 Math 2 2011-09-19 17:36 Mini-Geek Aliquot Sequences 15 2009-06-18 19:09 optim PrimeNet 13 2004-07-09 13:51

All times are UTC. The time now is 09:58.

Wed May 18 09:58:31 UTC 2022 up 34 days, 7:59, 0 users, load averages: 1.49, 1.54, 1.50

Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔