mersenneforum.org Theorems about ideals
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2012-01-20, 21:42 #1 fivemack (loop (#_fork))     Feb 2006 Cambridge, England 193516 Posts Theorems about ideals Suppose I have an ideal of Q[x,y,z,t] generated by f1 and f2, each homogenous of degree 2. Is there a theorem that, if a polynomial G of degree d is in the ideal, it can be written as q1*f1 + q2*f2 with deg(q1), deg(q2) bounded? I'm not at all sure even where to start looking for such a thing.
2012-01-20, 22:11   #2
ccorn

Apr 2010

151 Posts

Quote:
 Originally Posted by fivemack Suppose I have an ideal of Q[x,y,z,t] generated by f1 and f2, each homogenous of degree 2. Is there a theorem that, if a polynomial G of degree d is in the ideal, it can be written as q1*f1 + q2*f2 with deg(q1), deg(q2) bounded? I'm not at all sure even where to start looking for such a thing.
What about using a Groebner basis f1', f2', expressing G with respect to that base (giving q1', q2'), and then transforming back?

2012-01-20, 22:29   #3
fivemack
(loop (#_fork))

Feb 2006
Cambridge, England

33×239 Posts

Quote:
 Originally Posted by ccorn What about using a Groebner basis f1', f2', expressing G with respect to that base (giving q1', q2'), and then transforming back?
That's what the software I'm using at the moment (sage) is doing; it works perfectly well and determines q1 and q2 happily, but I don't know how to get a degree bound out of the process. The problem is that sage leaks memory at a spectacular rate, and I want to do tests as to whether a fixed G is in the ideals generated by a few billion different pairs f1, f2.

Last fiddled with by fivemack on 2012-01-20 at 22:31

2012-01-20, 23:33   #4
ccorn

Apr 2010

15110 Posts

Quote:
 Originally Posted by fivemack Suppose I have an ideal of Q[x,y,z,t] generated by f1 and f2, each homogenous of degree 2. Is there a theorem that, if a polynomial G of degree d is in the ideal, it can be written as q1*f1 + q2*f2 with deg(q1), deg(q2) bounded? I'm not at all sure even where to start looking for such a thing.
From googling for "degree bounds on Bezout polynomials", I have found this article.

 2012-01-21, 00:09 #5 Zeta-Flux     May 2003 7×13×17 Posts fivemack, That should follow directly from the fact that $f_1$ and $f_2$ are homogeneous. Given $G$, write it as $G=\sum_{i} G_i$, where $G_i$ is the homogeneous part of $G$ in degree $i$. If $G=q_1*f_1 + q_2*f2$ and $q_{i,j}$ is the homogeneous part of $q_i$ in degree $j$ then $G_i=q_{1,i-2}f_1 + q_{2,i-2}f_2$. (To see this, just look at all of the possible terms of a given degree.) In particular, you can choose the degrees on the $q$'s to be bounded by $\deg(G)-2$. Last fiddled with by Zeta-Flux on 2012-01-21 at 00:09
2012-01-21, 08:06   #6
ccorn

Apr 2010

15110 Posts

Quote:
 Originally Posted by ccorn From googling for "degree bounds on Bezout polynomials", I have found this article.
This mainly considers zero-dimensional zero loci. Your problem has too many variables for that, sorry. Yet another interesting article is this one which seems to cover your problem.

2012-01-21, 08:51   #7
ccorn

Apr 2010

151 Posts

Quote:
 Originally Posted by ccorn This mainly considers zero-dimensional zero loci. Your problem has too many variables for that, sorry. Yet another interesting article is this one which seems to cover your problem.
In particular, theorem 1.2 (p. 104) of the above article by Andersson mostly confirms Zeta-Flux's claim.

Last fiddled with by ccorn on 2012-01-21 at 08:52

2012-01-21, 10:21   #8
ccorn

Apr 2010

151 Posts

Quote:
 Originally Posted by Zeta-Flux fivemack, That should follow directly from the fact that $f_1$ and $f_2$ are homogeneous. Given $G$, write it as $G=\sum_{i} G_i$, where $G_i$ is the homogeneous part of $G$ in degree $i$. If $G=q_1*f_1 + q_2*f2$ and $q_{i,j}$ is the homogeneous part of $q_i$ in degree $j$ then $G_i=q_{1,i-2}f_1 + q_{2,i-2}f_2$. (To see this, just look at all of the possible terms of a given degree.) In particular, you can choose the degrees on the $q$'s to be bounded by $\deg(G)-2$.
I see. Even if higher-degree parts of q1, q2 would lead to a complete cancellation in the linear combination, those parts do not influence lower-degree parts of the linear combination, so they can as well be left out.

Last fiddled with by ccorn on 2012-01-21 at 10:23 Reason: Replaced "terms" by "parts" where appropriate

 2012-01-21, 11:37 #9 fivemack (loop (#_fork))     Feb 2006 Cambridge, England 33·239 Posts Thanks very much. I feel silly now, I should have been able to construct zeta-flux's argument on my own ...
 2012-01-21, 15:30 #10 Zeta-Flux     May 2003 7×13×17 Posts Don't feel bad, this is one of those things that just appears easy in hindsight. My area of expertise is ring theory, and quite a few of my papers specifically work with homogeneous ideals to construct examples and counter-examples. So I'm just very familiar with this kind of argument. Last fiddled with by Zeta-Flux on 2012-01-21 at 15:31
 2012-01-22, 11:01 #11 ccorn     Apr 2010 151 Posts Thanks to Zeta-Flux, the original question has been answered. However---Fivemack: Is your G a homogenized polynomial? If so, assume t is the projection variable. Then G and G*t^k (for some natural number k) are equivalent in the sense that their affine (unhomogenized) counterparts are equal. And it may well happen that G is not in the ideal generated by f1, f2 whereas G*t^k is (from some k onward). Example: f1(x,y,z,t) = y^2 + t^2 f2(x,y,z,t) = xy - xt + yt G(x,y,z,t) = xy - y^2 + xt All these are degree 2, but you need degree-1 factors to combine f1, f2 to G*t: q1(x,y,z,t) = x q2(x,y,z,t) = -y I note this rather for myself in order to keep in mind why homogenizing does not magically ease all membership questions. Last fiddled with by ccorn on 2012-01-22 at 11:08

 Similar Threads Thread Thread Starter Forum Replies Last Post paul0 Factoring 2 2015-01-19 11:52 jinydu Abstract Algebra & Algebraic Number Theory 5 2014-07-30 11:24 ShiningArcanine Math 21 2012-04-27 01:38 fivemack Factoring 5 2007-12-30 11:17 sghodeif Miscellaneous Math 18 2006-07-13 18:24

All times are UTC. The time now is 20:52.

Sat May 28 20:52:01 UTC 2022 up 44 days, 18:53, 0 users, load averages: 0.93, 1.35, 1.39

Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔