![]() |
![]() |
#12 | |
Nov 2003
22×5×373 Posts |
![]() Quote:
faster with SNFS or GNFS. SNFS lets us take advantage of the algebraic factor 2^152+1, but requires a quartic, which is sub-optimal for numbers this size. |
|
![]() |
![]() |
#13 | |
Apr 2004
Copenhagen, Denmark
22×29 Posts |
![]() Quote:
Code:
Each lines contains the values: nbit nprimes a5max normmax normmax1 normmax2 murphye e ... 350 4 100000 6e15 2e14 2e12 1e-09 1.69e-09 360 4 200000 1.5e16 5e14 5e12 7.5e-10 1.13e-09 370 4 200000 4e16 1.5e15 1.5e13 5e-10 7.75e-10 380 4 500000 8e16 4e15 3e13 3.5e-10 5.02e-10 390 4 500000 3e17 1e16 1e14 2.5e-10 3.53e-10 400 4 500000 9e17 3e16 2.5e14 2e-10 2.89e-10 410 4/5 2000000 3e18 1e17 7e14 1.4e-10 1.71e-10 420 5 2000000 1e19 3e17 2e15 9e-11 1.10e-10 430 5 2000000 3e19 9e17 5e15 5e-11 7.12e-11 440 5 2000000 1e20 2.5e18 1.5e16 3e-11 5.26e-11 450 5 2000000 4e20 7e18 4e16 2e-11 3.16e-11 460 6 10000000 1e21 2e19 1e17 1.8e-11 2.14e-11 470 6 10000000 4e21 6e19 3e17 1e-11 1.63e-11 480 6 10000000 1.5e22 2e20 9e17 7e-12 9.14e-12 490 ? ? 5e22 5e20 2.5e18 500 7 100000000 1.5e23 1.5e21 7e18 3e-12 >3.44e-12 510 ? ? 5e23 4e21 2e19 520 ? ? 2e24 1.5e22 5e19 530 ? ? 6e24 4e22 1.5e20 540 ? ? 2e25 1e23 4e20 Don, Please just assign an a5 range for me as you see fit. Currently I have some machines sieveing for 3,437-, but I can start searching when they are done sieving. ![]() -- Cheers, Jes Last fiddled with by JHansen on 2005-05-12 at 09:02 |
|
![]() |
![]() |
#14 | |
Mar 2003
79 Posts |
![]()
Hi Bob,
Quote:
f(x) = x^2 - x - 1 g(x) = 2^152*x-2^304-1 x=(2^152+1/2^152) Clever selection of polynomials is certainly not my forte and I've probably missed something. Any tips? Here is PARI code to show the process I used to reach the quadratic and linear: Code:
x^608 - x^456 + x^304 - x^152 + 1 y=x^152 y^4 - y^3 + y^2 - y + 1 (y^4 + y^2) - (y^3 + y) + 1 (y^4 + y^2) - (y^3 + y) + 1 ( (y^4 + y^2) - (y^3 + y) + 1 ) / y^2 ( (y^2 + 1) - (y^1 + y^-1) + y^-2 ) y^2 + 1 - y^1 - y^-1 + y^-2 y^2 + y^-2 - (y^1 + y^-1) + 1 z=y+y^-1 y^2 + y^-2 - z + 1 z^2= (y^2 + y^-2 + 2) z^2 - 2 - z + 1 z^2 - z - 1 n=(2^760+1)/(2^152+1) f(x) = x^2 - x - 1 g(x) = 2^152*x-2^304-1 m=(2^152+1/2^152) f(m)%n g(m)%n |
|
![]() |
![]() |
#15 | |
Nov 2003
22·5·373 Posts |
![]() Quote:
2^760 + 1 = x^5 + 1 with x = 2^152. But x^5+1 = (x+1)(x^4-x^3+x^2-x+1) So just use x - M and x^4-x^3+x^2-x+1 with M = 2^152 It is best NOT to convert the reciprocal quartiic into a quadratic in (x+1/x) because doing so blows up the coefficients on the linear side by too much. |
|
![]() |
![]() |
#16 | |
Mar 2003
New Zealand
13×89 Posts |
![]() Quote:
|
|
![]() |
![]() |
#17 | |
Jul 2003
So Cal
94916 Posts |
![]() Quote:
![]() Greg |
|
![]() |
![]() |
#18 | |
Bamboozled!
"๐บ๐๐ท๐ท๐ญ"
May 2003
Down not across
23·5·283 Posts |
![]() Quote:
So we won't get a >p100 penultimate factor any more, but it's still worth finishing with SNFS. Luckily the cofactor is still composite, or we would have spent quite some time having run the survey sieving to no avail. Paul |
|
![]() |
![]() |
#19 | |
Nov 2003
11101001001002 Posts |
![]() Quote:
have a higher density of small primes that split completely. This would make norms slightly more likely to be smooth. |
|
![]() |
![]() |
#20 | |
Jan 2004
7·19 Posts |
![]() Quote:
Thanks. |
|
![]() |
![]() |
#21 |
Dec 2008
72×17 Posts |
![]()
Sorry to be off-topic, but you are so lucky that you sleep 7 hours. I normally get 3-5 hours of sleep.
Last fiddled with by flouran on 2009-03-15 at 04:22 |
![]() |