mersenneforum.org Single Parameter Frobenius test -- 1+1+1+1+2 Selfridges
 Register FAQ Search Today's Posts Mark Forums Read

 2021-10-13, 19:13 #1 paulunderwood     Sep 2002 Database er0rr 32×19×23 Posts Single Parameter Frobenius test -- 1+1+1+1+2 Selfridges Code: { tst(n,a)=kronecker(a^2-4,n)==-1&& gcd((a^3-a)*(a+4),n)==1&& Mod(a-1,n)^(n-1)==1&& Mod(a,n)^(n-1)==1&& Mod(a+1,n)^(n-1)==1&& Mod(a+4,n)^(n-1)==1&& Mod(Mod(x+2,n),x^2-a*x+1)^(n+1)==2*a+5;} I am in the early stages of testing this test. Can you beat me to a counterexample?
 2021-10-14, 01:56 #2 paulunderwood     Sep 2002 Database er0rr 32×19×23 Posts I can save a few Selfridges by using the weaker form of Fermat's Little Theorem: Code: { tst(n,a)=kronecker(a^2-4,n)==-1&& gcd(a+4,n)==1&& Mod(a-1,n)^n==a-1&& Mod(a,n)^n==a&& Mod(a+1,n)^n==a+1&& Mod(a+4,n)^(n-1)==1&& Mod(Mod(x+2,n),x^2-a*x+1)^(n+1)==2*a+5; } Now "a" can be zero. So that the test is a base 4 Fermat test plus the Frobenius. The latter has been tested to 2^50. "a" can also be +/-1 which means bases 2 and 5, bases 2 and 3 respectfully plus the Frobenius. The Frobenius has also been tested up to 2^50 (excluding the cases for the previous paragraph). If "a" is +/-3 then a-1 and a+1 are the same Fermat PRP test, resuting in bases 2, 3 and 1 or 7 Fermat PRPs plus Frobenius. In summary: a=0 => 1+2 Selfridges a=-1 => 1+1+2 Selfridges a=1 => 1+1+2 Selfridges a=-3 => 1+1+2 Selfridges a=3 => 1+1+1+2 Selfridges a=4 => 1+1+1+2 Selfridges a=-5 => 1+1+1+2 Selfridges otherwise => 1+1+1+1+2 Selfrdges Last fiddled with by paulunderwood on 2021-10-14 at 07:34
 2021-10-14, 22:03 #3 paulunderwood     Sep 2002 Database er0rr 32·19·23 Posts Semi-primes are being stubborn, but when I feed in Carmichael numbers counterexamples abound such as [n,a]=[19384289, 8494896] This is yet another test that shows that X Frobenius tests with X parameters can be fooled.

 Similar Threads Thread Thread Starter Forum Replies Last Post bhelmes Miscellaneous Math 0 2021-06-07 00:43 bhelmes Miscellaneous Math 35 2021-04-10 17:01 paulunderwood Miscellaneous Math 21 2020-11-20 13:16 Neutron3529 GPU Computing 40 2019-05-03 09:49 dsouza123 Programming 6 2004-01-13 03:53

All times are UTC. The time now is 21:37.

Sun Nov 28 21:37:08 UTC 2021 up 128 days, 16:06, 0 users, load averages: 1.96, 1.76, 1.48