![]() |
![]() |
#23 | ||
Aug 2010
SPb
3410 Posts |
![]() Quote:
есть определенная связь :) расматривая второе известное исключение 2*i+7=46912496118443 => i+3=23456248059221=(2^23-1)*2796203=(2^46-1)/3 предположим что 46+1=47 имеет место быть в последовательности A054723 почемубы не проверить остальные числа из последовательности A054723 по этому принципу :-) в итоге получил новые исключения для последовательности A175625, по извесным элементам A054723 первый столбец элемент последовательности A054723 второй столбец исключение 2*i+7 для последовательности A175625 и прицип получения по i+3 Code:
A054723 2*i+7 exception(A175625) ----------------------------------------------------- 47 46912496118443 (Known exception) New find exception for A175625 59 192153584101141163 => i+3=(2^58-1)/3 83 3223802185639011132549803 => i+3=(2^82-1)/3 179 255415923477648143059724504525051530603123187030600363 => i+3=(2^178-1)/3 227 71893191112401706119112040232052348463032385126774859949609627331243 => i+3=(2^226-1)/3 263 4940462474125491004739028693704017401739519345733997399016856917670960197970603 => i+3=(2^262-1)/3 machine translation Quote:
Last fiddled with by allasc on 2010-08-04 at 09:53 |
||
![]() |
![]() |
![]() |
#24 |
Aug 2006
22×3×499 Posts |
![]()
I didn't find any other direct examples so far -- none to exponent ~100,000. I'll try to look at factors of Mersenne numbers and multiples of Mersenne numbers tomorrow.
|
![]() |
![]() |
![]() |
#25 |
Feb 2005
22×5×13 Posts |
![]()
Counterexamples are given, in particular, by numbers of the form
47, 59, 83, 107, 179, 227, 263, 359, 383, 467, 479, 503, 563, 587, 683, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2543, 2579, 2819, 2879, 2903, 2963, 2999, 3023, 3119, 3167, 3203, 3467, 3623, 3779, 3803, 3863, 3947, 4007, 4079, 4127, 4139, 4259, 4283, 4547, 4679, 4703, 4787, 4799, 4919, 4931, 5087, 5099, 5387, 5399, 5483, 5507, 5639, 5879, 5927, 5939, 6047, 6599, 6659, 6719, 6779, 6827, 6899, 6983, 7079, 7187, 7247, 7523, 7559, 7607, 7643, 7703, 7727, 7823, 8039, 8147, 8423, 8543, 8699, 8747, 8783, 8819, 8963, 9467, 9587, 9719, 9743, 9839, 9887, ... |
![]() |
![]() |
![]() |
#26 | |
Aug 2006
22·3·499 Posts |
![]() Quote:
Harder question: Can you give a simple characterization of the sequence, including the primes? Last fiddled with by CRGreathouse on 2010-08-05 at 03:02 |
|
![]() |
![]() |
![]() |
#27 |
Feb 2005
22×5×13 Posts |
![]() |
![]() |
![]() |
![]() |
#28 | ||
Aug 2010
SPb
2216 Posts |
![]() Quote:
а Вы целеноправленно рассматривали только простые числа, или проверяли все числа подряд ? :) а то прям так и напрашивается - новый тест на простоту :) любое k дающее контрпример для последовательности A175625 Machine translation Quote:
Last fiddled with by allasc on 2010-08-05 at 05:34 |
||
![]() |
![]() |
![]() |
#29 | |
Aug 2010
SPb
2×17 Posts |
![]() Quote:
thanks! Last fiddled with by allasc on 2010-08-09 at 05:07 |
|
![]() |
![]() |
![]() |
#30 |
Aug 2006
22·3·499 Posts |
![]()
It looks like 2^161039-1 is another composite member of this sequence. (I've been testing Mersenne numbers to see if any others would be in.)
|
![]() |
![]() |
![]() |
#31 |
Aug 2010
SPb
2·17 Posts |
![]()
пока для всех найденных составных чисел верно утверждение
(n-1)/2 имеет делитель вида 2^x-1 интересно найти составное число (n) не удовлетворяющее этому правилу :) ---------- While for all found composite member of this sequence truly statement (n-1)/2 has a kind divider 2^x-1 It is interesting to find composite member of this sequence (n) not satisfying to this rule |
![]() |
![]() |
![]() |
#32 |
Aug 2006
135448 Posts |
![]()
Of course we've all been doing special searches for numbers of that form, so it's not surprising we'd find exceptions of that type.
Unfortunately the individual tests take so long that it seems hard to test all numbers up to a reasonable level. |
![]() |
![]() |
![]() |
#33 |
Jun 2008
23×32 Posts |
![]()
Charles asked me for the database of (base 2 Fermat) pseudoprimes I've been working on.
We've been sitting on this one for more than a half year, simply because I got sidetracked/lost focus. I am truly somewhat ashamed of myself. This seems to be a good time to get back to it and finish the project. Anyway, Will Galway has been so kind to provide a better hosting location than my little website which only goes upto 10^17. You can find the full database here: http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html HTH. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Modifying the Lucas Lehmer Primality Test into a fast test of nothing | Trilo | Miscellaneous Math | 25 | 2018-03-11 23:20 |
New PC test re-test plan? | dh1 | Information & Answers | 8 | 2015-12-11 11:50 |
Double check LL test faster than first run test | lidocorc | Software | 3 | 2008-12-03 15:12 |
Will the torture test, test ALL available memory? | swinster | Software | 2 | 2007-12-01 17:54 |
A primality test for Fermat numbers faster than Pépin's test ? | T.Rex | Math | 0 | 2004-10-26 21:37 |