mersenneforum.org Dodecaproth Reservation Thread
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2006-01-23, 13:52 #12 Greenbank     Jul 2005 2·193 Posts 9340589605191285 87 Greenbank [10000T] FOUND Going back and filling in the gaps. n=64 reserved.
 2006-01-23, 14:52 #13 Kosmaj     Nov 2003 2·1,811 Posts Greenbank It will be nice if you can announce your reservations in advance, like all the others. Thanks!
 2006-01-23, 15:44 #14 Greenbank     Jul 2005 1100000102 Posts I normally just edit the status at the top directly. I'll post my reservations as normal from now on...
 2006-01-24, 10:49 #15 Greenbank     Jul 2005 2·193 Posts $../dodeca30 64 10000T 50000T You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes ) n=64, kmin=10000T, kmax=50000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 22619379006114345 64 The sieving is complete. Number of Prp tests=255929550 Time=18615 sec. Reserving n=65.  2006-01-24, 14:42 #16 Greenbank Jul 2005 2×193 Posts n=88 checked to 1152921T and none found! n=88, kmin=0T, kmax=1000T, version=3.0, here T=10^12 Starting the sieve... Using the first 10 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=1043746 Time=246 sec. n=88, kmin=1000T, kmax=10000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=9398311 Time=1609 sec. n=88, kmin=10000T, kmax=100000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=94011886 Time=15724 sec. n=88, kmin=100000T, kmax=200000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=104471197 Time=9868 sec. n=88, kmin=200000T, kmax=300000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=104469691 Time=9865 sec. n=88, kmin=300000T, kmax=1000000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=731066801 Time=53935 sec. n=88, kmin=1000000T, kmax=1152921T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=159716548 Time=13929 sec. That is the highest T below 2^60 (the limit of dodeca30) at the moment. Anyway, onwards with n=65.  2006-01-24, 14:54 #17 Greenbank Jul 2005 2×193 Posts n=90 done. Set it off for 300000T to 400000T and it quickly popped up with one just below 304000T so I restarted it on this smaller range.$ ../dodeca30 90 300000T 304000T You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes ) n=90, kmin=300000T, kmax=304000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 303435075929440455 90 The sieving is complete. Number of Prp tests=7551605 Time=571 sec.
 2006-01-24, 20:32 #18 robert44444uk     Jun 2003 Suva, Fiji 111111110002 Posts 59 Tested 59 now up to 92000T, plenty of dodecas, but none with more than two legs, right or left Full results: 2348074892952495 3380369146304535 5973326670402945 7365626017878345 9593141900086605 8537255710868115 4451592815485725 6857355849333465 8516722688845665 4168021941682305 13693913473485315 12042323140434825 16643614185878295 18112802603245665 16252412670268845 22709096095218225 28675183364772945 22423230830763525 23104149461636565 32614588836975075 31243999534789335 35081125383540915 30631531836890985 40222045009560015 39240625652716635 36479043591784395 39286064347410195 37781376117259005 39698961007434435 38961624723430185 44275148497658295 62919657201157995 52790410633630215 47368063063108935 56285618616036495 54149263209133785 44427527346266925 72016659343442415 70516911831145395 71403188883346005 74017737464478045 68738001105089715 71634721872187635 70477710075953565 68750708881966335 71359200965274915 81779177935969605 77110143894153825 76078270000252065 88319693393101485 82149068190537495 82145306864351955 90024743512089225 Will take this one further Regards Robert Smith
 2006-01-24, 22:37 #19 R. Gerbicz     "Robert Gerbicz" Oct 2005 Hungary 7×229 Posts Greenbank, please reserve for me n=60. I'll complete the full range for this n. Nice results Robert, n=59 is crowded by dodecaproths, if my prediction is correct then there are about f(59)=282 dodecaproths for this n value! Just to compare that seeing my prediction: there is only about 73 dodecaproths for all n<59 altogether!
 2006-01-24, 22:41 #20 Kosmaj     Nov 2003 2·1,811 Posts n=91 completed to 7.5E17. Reserving n=103.
2006-01-24, 22:50   #21
R. Gerbicz

"Robert Gerbicz"
Oct 2005
Hungary

160310 Posts

Quote:
 Originally Posted by Kosmaj n=91 completed to 7.5E17. Reserving n=103.
OK, in the new dodeca_4_0 program I've increased n limit from 99 to 127, after seeing a dodecaproth for n=91. Just to compare if n is about 128 then it is more than 50 times harder to find a dodecaproth if n is about 90

 2006-01-25, 01:04 #22 grobie     Sep 2005 Raleigh, North Carolina 337 Posts question, I keep reading taking n's to full range. What is the full range

 Thread Tools

 Similar Threads Thread Thread Starter Forum Replies Last Post Kosmaj Riesel Prime Search 707 2021-11-20 19:13 VBCurtis Riesel Prime Search 679 2021-10-09 17:33 Oddball Twin Prime Search 33 2012-01-20 05:37 Greenbank Octoproth Search 2 2007-12-26 09:58 Greenbank Octoproth Search 0 2006-01-25 13:41

All times are UTC. The time now is 06:58.

Sat Dec 3 06:58:12 UTC 2022 up 107 days, 4:26, 0 users, load averages: 0.90, 0.93, 1.01

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔