mersenneforum.org  

Go Back   mersenneforum.org > Fun Stuff > Lounge

Reply
 
Thread Tools
Old 2015-12-07, 19:05   #1
lavalamp
 
lavalamp's Avatar
 
Oct 2007
Manchester, UK

32×149 Posts
Default Near repdigit primes on Numberphile

Thought some people on here may find this interesting, popularising of interesting primes.
https://www.youtube.com/watch?v=HPfAnX5blO0
lavalamp is offline   Reply With Quote
Old 2015-12-07, 20:20   #2
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

2·3·5·311 Posts
Default

It is nice for popularising, sure, but they still ought not to make up "new names" when established terms exist.
It is great to explain everything as well as they do (this episode is no outlier, they always very well done on the explanation and element-of-surprise level), but without reference to the body of existing work (perhaps at the very end) it comes across as crankish. Sorry, guys, if you will be reading this. Nice, yes, ... but crankish.

They should invest some time in research before filming. Filming takes quite some effort and it is, in this case, done professionally, but what does a good production company have besides actors (be that in this case 'actor/author/producer/director') and an operator, a lighting and sound crew? There is always research.

"Palindromic near-repdigit primes". LMGTFY!
UTM pages, as well as worldofnumbers.com, recmath and OEIS immediately show up in this search. No effort needed.
Batalov is offline   Reply With Quote
Old 2015-12-07, 23:00   #3
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

100100011100102 Posts
Default

* OEIS A265383 (pending approval)
* Kamada's NRR (these are "9v89w" in his notation, i.e. v \ne w; the 9w89w are palindromes, 102n+1-10n-1, studied much deeper by Darren Bedwell, with the largest known prime 10^134809-10^67404-1).
* UTM NRR primes
* H. C. Williams, "Some primes with interesting digit patterns," Math. Comp., 32 (1978) 1306--1310. Corrigendum in 39 (1982), 759. MR 58:484
Batalov is offline   Reply With Quote
Old 2015-12-08, 00:18   #4
CRGreathouse
 
CRGreathouse's Avatar
 
Aug 2006

135268 Posts
Default

Quote:
Originally Posted by Batalov View Post
* OEIS A265383 (pending approval)
Approved.
CRGreathouse is offline   Reply With Quote
Old 2015-12-08, 03:21   #5
Mini-Geek
Account Deleted
 
Mini-Geek's Avatar
 
"Tim Sorbera"
Aug 2006
San Antonio, TX USA

17×251 Posts
Default

I wonder if the database he referred to in the video was factordb.com?
Quote:
Originally Posted by A265383
1, 6, 9, 154, 253, 1114, 1390, 2618, 5611
...
15286 is a member of the sequence, due to Kazuyoshi Asao (Feb 11, 2002), but its position in sequence is currently unverified.
I've started a small (1 core) search with PFGW running from n=1 to 20k. Currently at n=4500, no surprises. I'm not sure if there has been a more thorough search or if anyone is running a similar search now.

Quote:
Originally Posted by Batalov View Post
It is nice for popularising, sure, but they still ought not to make up "new names" when established terms exist...
I'm a Numberphile fan, but I still agree with you. I guess halfway-good math that gets people interested is better than no math at all.

Quote:
Originally Posted by Batalov View Post
(be that in this case 'actor/author/producer/director')
In this video, Simon Pampena is the "actor" and Brady Haran is the "everything else" (as I understand it). Brady makes a lot of videos on math, computers, etc., but rarely stars in them.

Last fiddled with by Mini-Geek on 2015-12-08 at 03:33 Reason: relevant xkcd
Mini-Geek is offline   Reply With Quote
Old 2015-12-08, 04:19   #6
lavalamp
 
lavalamp's Avatar
 
Oct 2007
Manchester, UK

32·149 Posts
Default

Quote:
Originally Posted by Mini-Geek View Post
I wonder if the database he referred to in the video was factordb.com?
I had wondered the same, but it doesn't seem to be as factordb stops at 253.
lavalamp is offline   Reply With Quote
Old 2015-12-08, 04:42   #7
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

2×3×5×311 Posts
Default

There is an invisible extra member in the sequence "1, 6, 9, 154, 253, 1114, 1390, 2618, 5611, 12871" (in draft).
Statistically, the next term is likely Asao's, I pre-sieved and I am scanning up to 20,000++, too.

Btw, prime UTM database remebers every little prime submitted many years ago.
Use http://primes.utm.edu/bios/page.php?id=183 and press "All of this Person's primes"...

P.S. You will find that Asao was also curious about "Cyclop"-like series 22n-2n-1 which unlike the series in the Numberphile episode (the palindromic one, 22n+1-2n-1) is not algebraically factored. These are now, of course, also known as OEIS A098845.

Last fiddled with by Batalov on 2015-12-08 at 05:05
Batalov is offline   Reply With Quote
Old 2015-12-08, 12:40   #8
Mini-Geek
Account Deleted
 
Mini-Geek's Avatar
 
"Tim Sorbera"
Aug 2006
San Antonio, TX USA

17·251 Posts
Default

Quote:
Originally Posted by Batalov View Post
There is an invisible extra member in the sequence "1, 6, 9, 154, 253, 1114, 1390, 2618, 5611, 12871" (in draft).
Statistically, the next term is likely Asao's, I pre-sieved and I am scanning up to 20,000++, too.
I've tested through n=13043 and found the same list as you. I'm stopping there, since you are ahead of me.

How did you pre-sieve this sequence? Is there a tool out there that can take this form, or is it easy to tweak some siever to take a general-form number, maybe? I just ran PFGW with -f so it tried factoring each number before doing its N+1 test.
Mini-Geek is offline   Reply With Quote
Old 2015-12-08, 13:02   #9
science_man_88
 
science_man_88's Avatar
 
"Forget I exist"
Jul 2009
Dumbassville

100000110000002 Posts
Default

Quote:
Originally Posted by Mini-Geek View Post
How did you pre-sieve this sequence? Is there a tool out there that can take this form, or is it easy to tweak some siever to take a general-form number, maybe? I just ran PFGW with -f so it tried factoring each number before doing its N+1 test.
my first thought based on the numberphile video would be the polynomial form $ x^{2n}-x^n-1 $ all numbers in the sequence for x=10,can't be divisible by 2,3,5, mod 7 it becomes 32n-3n-1
science_man_88 is offline   Reply With Quote
Old 2015-12-08, 14:15   #10
CRGreathouse
 
CRGreathouse's Avatar
 
Aug 2006

2·29·103 Posts
Default

Quote:
Originally Posted by science_man_88 View Post
my first thought based on the numberphile video would be the polynomial form $ x^{2n}-x^n-1 $ all numbers in the sequence for x=10,can't be divisible by 2,3,5, mod 7 it becomes 32n-3n-1
I think Mini-Geek was talking about sieving much higher than 7.

__________

P.S. (S.B.): just wanted to add so that this topic was not interrupted, here, in place:
Only primes such that (5|p) = 1 can be factors; that is, in other words, only p>=11 that end with 1 or 9.

Similarly, for 102n+1-10n-1, only p :: (41|p) = 1 can be factors; that is, 23, 31, 37, 43, 59, 61, 73, 83, 103, 107, ...

Last fiddled with by Batalov on 2015-12-11 at 02:07 Reason: (P.S.)
CRGreathouse is offline   Reply With Quote
Old 2015-12-08, 14:31   #11
lavalamp
 
lavalamp's Avatar
 
Oct 2007
Manchester, UK

32×149 Posts
Default

Quote:
Originally Posted by science_man_88 View Post
my first thought based on the numberphile video would be the polynomial form $ x^{2n}-x^n-1 $ all numbers in the sequence for x=10,can't be divisible by 2,3,5, mod 7 it becomes 32n-3n-1
This is true, but it's also obvious without using modular arithmetic. 998999 is clearly not divisible by 2 or 5, and since all but one of the digits is divisible by 3, the number as a whole is not divisible by 3.
lavalamp is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
a numberphile like channel by kids science_man_88 science_man_88 0 2017-11-17 21:37
prime gap- numberphile vid firejuggler Prime Gap Searches 8 2017-07-19 20:22
Near-repdigit 5(1)w IvanP FactorDB 1 2013-10-03 15:41
Repdigit prime project jasong Open Projects 23 2011-01-22 15:14
possibly abandoned repdigit prime project jasong jasong 8 2007-08-11 03:37

All times are UTC. The time now is 13:12.

Thu Mar 4 13:12:29 UTC 2021 up 91 days, 9:23, 1 user, load averages: 2.60, 3.02, 2.70

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.