![]() |
![]() |
#1 |
Jun 2019
2×17 Posts |
![]()
(2n-2)-7 is a quadratic residue modulo M(n)
x2 = ( 2n-2)-7 mod M(n) let n >5 example 52 --------------------------------= (27-2)-7 mod 27-1 38242----------------------------= (213-2)-7 mod 213-1 1812------------------------------= (217-2)-7 mod 217-1 4706212-------------------------= (219-2)-7 mod 219-1 13192077362------------------= (231-2)-7 mod 231-1 7558603523101899312------------------------------------------= (261-2)-7 mod 261-1 5375839232663506644937839732---------------------------= (289-2)-7 mod 289-1 560073960062182455573993569805432-------------------= (2107-2)-7 mod 2107-1 1180149151945109291147994277315908219182--------= (2127-2)-7 mod 2127-1 |
![]() |
![]() |
![]() |
#2 |
Sep 2002
Database er0rr
3,533 Posts |
![]()
It is true for all odd prime p that kronecker(2^(p-2)-7,2^p-1) == 1. What is your point?
|
![]() |
![]() |
![]() |
#3 |
Jun 2019
2×17 Posts |
![]()
why is true Is there an order of Distribution of quadratic residues
|
![]() |
![]() |
![]() |
#4 |
Sep 2002
Database er0rr
3,533 Posts |
![]()
2^(p-2)-7 has the same residue as 2^p - 7*4; same as 1 -7*4; same as -27; same as -3, and this is always true for odd Mersenne. LL is the same as x^(n+1)==1 mod (M_p, x^2-4*x+1) and the polynomial has discriminant 12 the kronecker symbol of which is -1; same as for 3. The kronecker symbol of -3 over M_p is 1 since kronecker(-1,M_p)==-1 because M_p==3 mod 4. That is how I see it.
Last fiddled with by paulunderwood on 2020-09-28 at 14:51 |
![]() |
![]() |
![]() |
#5 |
Jun 2019
2216 Posts |
![]()
( 2n-2)-7 is quadratic residue
1 < a k= ( 2n-2)-7 - ( ((a*a+1)/2)-1 * 6 ) IF k > 0 is quadratic residue example M13(8191) ( 2n-2)-7 = 2041 is quadratic residue 2041 - ( ((2*3)/2)-1 * 6 ) = 2029 is quadratic residue 2041 - ( ((3*4)/2)-1 * 6 ) = 2011 is quadratic residue 2041 - ( ((4*5)/2)-1 * 6 ) = 1987 is quadratic residue 2041 - ( ((5*6)/2)-1 * 6 ) = 1957 is quadratic residue M17(131071) ( 2n-2)-7 = 32761is quadratic residue 32761- ( ((2*3)/2)-1 * 6 ) = 32749is quadratic residue 32761- ( ((3*4)/2)-1 * 6 ) = 32731is quadratic residue 32761- ( ((4*5)/2)-1 * 6 ) = 32707is quadratic residue 32761- ( ((5*6)/2)-1 * 6 ) = 32677is quadratic residue Last fiddled with by baih on 2020-09-28 at 15:16 |
![]() |
![]() |
![]() |
#6 |
Sep 2002
Database er0rr
3,533 Posts |
![]()
Re-writing your terrible use of brackets...
2^(p-2)- 7 - ((a*(a+1)/2) - 1)*6 has the same symbol over M_p as: 2^(p-2) - 1 - 3*a*(a+1) same as 2^p -4 - 12*a*(a+1) same as -3 - 12*a*(a+1) same as -3(4*a^2+4*a+1) same as -3(2*a+1)^2 same as -3 I.e. the symbol is 1. Last fiddled with by paulunderwood on 2020-09-28 at 15:31 |
![]() |
![]() |
![]() |
#7 | |
Jun 2019
1000102 Posts |
![]() Quote:
my work is a programmer (java android) |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Quadratic residue counts related to four squares representation counts | Till | Analysis & Analytic Number Theory | 8 | 2020-10-11 18:11 |
question: decidability for quadratic residues modulo a composite | LaurV | Math | 18 | 2017-09-16 14:47 |
Basic Number Theory 18: quadratic equations modulo n | Nick | Number Theory Discussion Group | 4 | 2017-03-27 06:01 |
Quadratic residue mod 2^p-1 | alpertron | Miscellaneous Math | 17 | 2012-04-30 15:28 |
Order of 3 modulo a Mersenne prime | T.Rex | Math | 7 | 2009-03-13 10:46 |