![]() |
![]() |
#1 |
22·3·83 Posts |
![]()
I'm curious of any large ranges between primes.. for instance, 11 and 13 have a range of 2.. which is quite small :p i'm curious of any large ranges between primes.. not necessarily the largest range, althought that would be interesting.. but just any large ranges you may know of.. I do not want to just read through the list of 10000 or more primes trying to notice some, so i'm wondering if anyone knows any off hand.
Thanks. |
![]() |
![]() |
#2 | |
"Bob Silverman"
Nov 2003
North of Boston
164448 Posts |
![]() Quote:
between primes can be arbitrarily large. |
|
![]() |
![]() |
![]() |
#3 | |
243916 Posts |
![]() Quote:
well there is a reason kind of.. i have just recently been looking at primes and seeing if I can see any patterns.. can't really say how the range would relate to any patterns im thinking of.. im just merely curious :) |
|
![]() |
![]() |
#4 |
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
245768 Posts |
![]()
I have some data on this on a different machine. In the range of smaller numbers <100,000,000,000 there are gaps of ~230 (if I recall correctly).
I can post some of the actual info when I get a chance. |
![]() |
![]() |
![]() |
#5 | |
Bronze Medalist
Jan 2004
Mumbai,India
1000000001002 Posts |
![]() Quote:
Let n! represent the product of all whole numbers from 1 to n. Thus n! can be divided by every whole number from 2 to n. Now construct the sequence of consecutive n! + 2, n! + 3 , n! + 4 and so on all the way to n! +n. These terms are divisible by 2 , 3 , etc. till n - 1 numbers and so none is a prime number. By choosing n as large as you want you can have a prime free sequence of consecutive whole numbers as long as you want Mally |
|
![]() |
![]() |
![]() |
#6 |
∂2ω=0
Sep 2002
República de California
112×97 Posts |
![]()
As far as actual-largest-gaps go, here is a table I lifted from an old Fortran code of mine. The (a:b) numbers following each 'case' should be read as "for integers between a and b," and the maximal gap between primes in that interval is 2*ncopy. (I believe I may have gotten the data from a table in Riesel's book):
Code:
case( 2: 7); ncopy=1; case( 8: 23); ncopy=2; case( 24: 29); ncopy=3; case( 30: 97); ncopy=4; case( 98: 127); ncopy=7; case( 128: 541); ncopy=9; case( 542: 907); ncopy=10; case( 908: 1151); ncopy=11; case( 1152: 1361); ncopy=17; case( 1362: 9587); ncopy=18; case( 9588: 15727); ncopy=22; case( 15728: 19661); ncopy=26; case( 19662: 31469); ncopy=36; case( 31470: 156007); ncopy=43; case( 156008: 360749); ncopy=48; case( 360750: 370373); ncopy=56; case( 370374: 492227); ncopy=57; case( 492228: 1349651); ncopy=59; case( 1349652: 1357333); ncopy=66; case( 1357334: 2101881); ncopy=74; case( 2101882: 4652507); ncopy=77; case( 4652508: 17051887); ncopy=90; case( 17051888: 20831533); ncopy=105; case( 20831534: 47326913); ncopy=110; case( 47326914: 122164969); ncopy=111; case( 122164970: 189695893); ncopy=117; case( 189695894: 191913031); ncopy=124; case( 191913032: 387096383); ncopy=125; case( 387096384: 436273291); ncopy=141; case( 436273292: 1294268779); ncopy=144; case( 1294268780: 1453168433); ncopy=146; case( 1453168434: 2300942869); ncopy=160; case( 2300942870: 3842611109); ncopy=168; case( 3842611110: 4302407713); ncopy=177; case( 4302407714: 10726905041); ncopy=191; case( 10726905042: 20678048681); ncopy=192; case( 20678048682: 22367085353); ncopy=197; case( 22367085354: 25056082543); ncopy=228; case( 25056082544: 42652518807); ncopy=232; case( 42652518808: 127976335139); ncopy=234; case( 127976335140: 182226896713); ncopy=237; case( 182226896714: 241160624629); ncopy=243; case( 241160624630: 297501076289); ncopy=245; case( 297501076290: 303371455741); ncopy=250; case( 303371455742: 304599509051); ncopy=257; case( 304599509052: 416608696337); ncopy=258; case( 416608696338: 461690510543); ncopy=266; case( 461690510544: 614487454057); ncopy=267; case( 614487454058: 738832928467); ncopy=270; case( 738832928468: 1346294311331); ncopy=291; case( 1346294311332: 1408695494197); ncopy=294; case( 1408695494198: 1968188557063); ncopy=301; case( 1968188557064: 2614941711251); ncopy=326; case( 2614941711252: 7177162612387); ncopy=337; case( 7177162612388:13829048560417); ncopy=358; case(13829048560418:19581334193189); ncopy=383; case(19581334193190:42842283926129); ncopy=389; |
![]() |
![]() |
![]() |
#7 |
"Nancy"
Aug 2002
Alexandria
1001101000112 Posts |
![]()
The buzzword is "prime gaps", use Google.
Alex |
![]() |
![]() |
![]() |
#8 |
10000011102 Posts |
![]()
I know of a gap of over 750
127490705678451059912076166345994002627474713081384902130819786906217567 and 127490705678451059912076166345994002627474713081384902130819786906218321 Hope this helps |
![]() |
![]() |
#9 |
Account Deleted
"Tim Sorbera"
Aug 2006
San Antonio, TX USA
102668 Posts |
![]()
Although it is extrememly likely that there are many other primes between these two, if we're talking about the gap between known primes, then
|
![]() |
![]() |
![]() |
#10 |
"Nancy"
Aug 2002
Alexandria
2,467 Posts |
![]()
Chebyshev said it,
We'll say it again: There's always a prime between n and 2n. Alex |
![]() |
![]() |
![]() |
#11 |
∂2ω=0
Sep 2002
República de California
112×97 Posts |
![]()
I prefer to spread at least part of the credit to the original conjecturer:
Bertrand proposed it, and Chebyshev proved it true, There's always a prime Between n and n times 2. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Largest k*2^n-1 Primes Found in 2012 | Kosmaj | Riesel Prime Search | 3 | 2013-12-27 13:25 |
Largest k*2^n-1 Primes in 2011 | Kosmaj | Riesel Prime Search | 0 | 2012-01-01 16:52 |
Largest k*2^n-1 Primes in 2010 | Kosmaj | Riesel Prime Search | 0 | 2011-01-05 04:24 |
Largest Simultaneous Primes | robert44444uk | Octoproth Search | 4 | 2006-02-04 18:45 |
What is the largest database of all primes from 2 up? | jasong | Miscellaneous Math | 6 | 2006-01-04 23:16 |