mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Operazione Doppi Mersennes

Reply
 
Thread Tools
Old 2012-09-16, 02:25   #12
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

50438 Posts
Default

Code:
no factor for k*2^29+1 from 2^77 to 2^78 (k range: 550T to 1000T) [mmff 0.21 mfaktc_barrett89_F0_31gs]
no factor for k*2^29+1 from 2^78 to 2^79 (k range: 550T to 1000T) [mmff 0.21 mfaktc_barrett89_F0_31gs]
frmky is online now   Reply With Quote
Old 2012-09-17, 08:31   #13
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

3·5·173 Posts
Default

Code:
no factor for k*2^34+1 in k range: 700T to 1000T (84-bit factors) [mmff 0.22 mfaktc_barrett89_F32_63gs]
frmky is online now   Reply With Quote
Old 2012-09-17, 21:04   #14
Jatheski
 
Jatheski's Avatar
 
Apr 2012
993438: i1090

2·73 Posts
Default

Code:
no factor for k*2^33+1 from 2^82 to 2^83 (k range: 700T to 1000T) [mmff 0.21 mfaktc_barrett89_F32_63gs]
Jatheski is offline   Reply With Quote
Old 2012-09-18, 06:28   #15
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

50438 Posts
Default

Code:
no factor for k*2^40+1 in k range: 600T to 1000T (90-bit factors) [mmff 0.23 mfaktc_barrett96_F32_63gs]
frmky is online now   Reply With Quote
Old 2012-09-18, 18:17   #16
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

3·5·173 Posts
Default

Code:
no factor for k*2^100+1 from 2^143 to 2^144 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^100+1 from 2^144 to 2^145 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^100+1 from 2^145 to 2^146 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^101+1 from 2^144 to 2^145 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^101+1 from 2^145 to 2^146 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^101+1 from 2^146 to 2^147 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^102+1 from 2^145 to 2^146 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^102+1 from 2^146 to 2^147 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^102+1 from 2^147 to 2^148 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^103+1 from 2^146 to 2^147 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^103+1 from 2^147 to 2^148 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^103+1 from 2^148 to 2^149 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^104+1 from 2^147 to 2^148 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^104+1 from 2^148 to 2^149 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^104+1 from 2^149 to 2^150 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^105+1 from 2^148 to 2^149 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^105+1 from 2^149 to 2^150 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^105+1 from 2^150 to 2^151 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^106+1 from 2^149 to 2^150 (k range: 16T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^106+1 from 2^150 to 2^151 (k range: 0T to 50T) [mmff 0.21 mfaktc_barrett152_F96_127gs]
no factor for k*2^106+1 in k range: 35184372088832 to 50000000000000 (152-bit factors) [mmff 0.23 mfaktc_barrett152_F96_127gs]
no factor for k*2^107+1 in k range: 16000000000000 to 17592186044416 (151-bit factors) [mmff 0.23 mfaktc_barrett152_F96_127gs]
no factor for k*2^107+1 in k range: 17592186044416 to 35184372088832 (152-bit factors) [mmff 0.23 mfaktc_barrett152_F96_127gs]
no factor for k*2^107+1 in k range: 35184372088832 to 50000000000000 (153-bit factors) [mmff 0.23 mfaktc_barrett160_F96_127gs]
no factor for k*2^108+1 in k range: 16000000000000 to 17592186044416 (152-bit factors) [mmff 0.23 mfaktc_barrett152_F96_127gs]
no factor for k*2^108+1 in k range: 17592186044416 to 35184372088832 (153-bit factors) [mmff 0.23 mfaktc_barrett160_F96_127gs]
no factor for k*2^108+1 in k range: 35184372088832 to 50000000000000 (154-bit factors) [mmff 0.23 mfaktc_barrett160_F96_127gs]
no factor for k*2^109+1 in k range: 16000000000000 to 17592186044416 (153-bit factors) [mmff 0.23 mfaktc_barrett160_F96_127gs]
no factor for k*2^109+1 in k range: 17592186044416 to 35184372088832 (154-bit factors) [mmff 0.23 mfaktc_barrett160_F96_127gs]
no factor for k*2^109+1 in k range: 35184372088832 to 50000000000000 (155-bit factors) [mmff 0.23 mfaktc_barrett160_F96_127gs]
frmky is online now   Reply With Quote
Old 2012-09-19, 16:44   #17
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

3·5·173 Posts
Default

Code:
no factor for k*2^45+1 in k range: 500000000000000 to 562949953421312 (94-bit factors) [mmff 0.23 mfaktc_barrett96_F32_63gs]
no factor for k*2^45+1 in k range: 562949953421312 to 1000000000000000 (95-bit factors) [mmff 0.23 mfaktc_barrett96_F32_63gs]
frmky is online now   Reply With Quote
Old 2012-09-19, 23:25   #18
RichD
 
RichD's Avatar
 
Sep 2008
Kansas

73328 Posts
Default

Quote:
Originally Posted by RichD View Post
It looks like this is still available so I would like to reserve it.

Code:
MMFactor=127,2.5e15,2.8e15
And it will take 8 days on my GTX 560.

Done.

Code:
no factor for MM127 from 2^179 to 2^180 (k range: 2500T to 2800T) [mmff 0.21 mfaktc_barrett183_M127gs]
RichD is offline   Reply With Quote
Old 2012-09-21, 20:41   #19
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

3×5×173 Posts
Default

Code:
no factor for k*2^50+1 in k range: 300000000000000 to 562949953421312 (99-bit factors) [mmff 0.23 mfaktc_barrett108_F32_63gs]
no factor for k*2^50+1 in k range: 562949953421312 to 1000000000000000 (100-bit factors) [mmff 0.23 mfaktc_barrett108_F32_63gs]
frmky is online now   Reply With Quote
Old 2012-09-21, 20:47   #20
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

274316 Posts
Default

I am desperately searching for the word "has" in this thread...
Batalov is offline   Reply With Quote
Old 2012-09-22, 11:04   #21
Jatheski
 
Jatheski's Avatar
 
Apr 2012
993438: i1090

2×73 Posts
Default

Code:
no factor for k*2^41+1 in k range: 600T to 1000T (91-bit factors) [mmff 0.23 mfaktc_barrett96_F32_63gs]
no factor for k*2^42+1 in k range: 600T to 1000T (92-bit factors) [mmff 0.23 mfaktc_barrett96_F32_63gs]
Jatheski is offline   Reply With Quote
Old 2012-09-22, 16:59   #22
aketilander
 
aketilander's Avatar
 
"Åke Tilander"
Apr 2011
Sandviken, Sweden

2·283 Posts
Smile

Quote:
Originally Posted by Batalov View Post
I am desperately searching for the word "has" in this thread...
Well we are doing our best ;-) but you know only 13 factors of double Mersennes (with prime exponent) have ever been discovered. The first one in 1957 and only one after 2005, so we may have to wait for a while for the next one. ;-)
aketilander is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
gfn results ET_ FermatSearch 12 2021-02-20 03:01
Where have all the TF results gone?... lycorn PrimeNet 22 2017-10-02 02:40
PGS Results danaj Prime Gap Searches 0 2017-08-14 18:35
CPU Results last 24 hrs Unregistered Information & Answers 3 2010-07-26 00:49
0x results... Mike PrimeNet 11 2004-05-23 12:55

All times are UTC. The time now is 05:19.


Sun Jan 29 05:19:33 UTC 2023 up 164 days, 2:48, 0 users, load averages: 1.18, 1.31, 1.26

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔