![]() |
![]() |
#408 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5·13·53 Posts |
![]()
This is the smallest base b (b>=2) such that there is a unique prime with period length n, but gcd(Phi(n,b),n) > 1, i.e. Phi(n,b) is not prime, but Phi(n,b)/gcd(Phi(n,b),n) is prime.
If n is in https://oeis.org/A253235, then gcd(Phi(n,b),n) = 1 for all b, thus there cannot be such b, and if Schinzel's hypothesis H is true, then there are infinitely many such bases b for all n not in https://oeis.org/A253235 |
![]() |
![]() |
![]() |
#409 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
1101011101012 Posts |
![]()
List of primes of the form k*2^n+1 for -5000<=k<=5000 (k odd), -5000<=n<=5000 (n != 0)
we choose absolute value for negative numbers (i.e. k<0) we choose numerator for noninteger rational numbers (i.e. n<0) |
![]() |
![]() |
![]() |
#410 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5·13·53 Posts |
![]()
a-file for A039951, see https://oeis.org/A039951/a039951_1.txt
|
![]() |
![]() |
![]() |
#411 | |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5·13·53 Posts |
![]() Quote:
Smallest |n|: A033809 (k>0, n>0) A046067 (k>0, n>=0) A078680 (k>0, n>0, allow even k) A040076 (k>0, n>=0, allow even k) A108129 (k<0, n>0) A046069 (k<0, n>=0) A050412 (k<0, n>0, allow even k) A040081 (k<0, n>=0, allow even k) A067760 (k>0, n<0) A252168 (k<0, n<0) A096502 (k<0, n<0, 2^|n| > |k|) A276417 (k<0, n<0, 2^|n| < |k|) A078683 (k>0, n>0, corresponding primes) A057025 (k>0, n>=0, corresponding primes) A050921 (k>0, n>=0, allow even k, corresponding primes) A052333 (k<0, n>0, corresponding primes) A057026 (k<0, n>=0, corresponding primes) A038699 (k<0, n>=0, allow even k, corresponding primes) A123252 (k>0, n<0, corresponding primes) A096822 (k<0, n<0, 2^|n| > |k|, corresponding primes) Last fiddled with by sweety439 on 2022-05-04 at 12:57 |
|
![]() |
![]() |
![]() |
#412 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5·13·53 Posts |
![]()
Also the n-values for specific k:
k=-15: A002237 (positive n), A059612 (negative n) k=-13: A001773 (positive n), A096818 (negative n) k=-11: A001772 (positive n), A096817 (negative n) k=-9: A002236 (positive n), A059610 (negative n) k=-7: A001771 (positive n), A059609 (negative n) k=-5: A001770 (positive n), A059608 (negative n) k=-3: A002235 (positive n), A050414 (negative n) k=-1: A000043 (positive n), A000043 (negative n) k=3: A002253 (positive n), A057732 (negative n) k=5: A002254 (positive n), A059242 (negative n) k=7: A032353 (positive n), A057195 (negative n) k=9: A002256 (positive n), A057196 (negative n) k=11: A002261 (positive n), A102633 (negative n) k=13: A032356 (positive n), A102634 (negative n) k=15: A002258 (positive n), A057197 (negative n) |
![]() |
![]() |
![]() |
#413 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5·13·53 Posts |
![]()
This is the dual problem of problem 49 of twin primes (see https://mersenneforum.org/forumdisplay.php?f=86, http://mersenneforum.org/showthread.php?t=10754, http://mersenneforum.org/showthread.php?t=6545)
For odd k < 237 which are divisible by 3, does there always exist n>1 such that 2^n+k and 2^n-k are both primes? (for k = 237, such prime pairs cannot exist, since the same as twin primes of the form k*2^n+1 and k*2^n-1) status: Code:
3,3 9,5 15,5 21,5 27,5 33,6 39,7 45,6 51,9 57,8 63,unknown 69,7 75,8 81,9 87,unknown 93,8 99,7 105,7 111,7 117,8 123,7 129,9 135,14 141,unknown 147,10 153,8 159,11 165,9 171,unknown 177,8 183,8 189,15 195,unknown 201,unknown 207,unknown 213,10 219,unknown 225,11 231,9 |
![]() |
![]() |
![]() |
#414 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5×13×53 Posts |
![]()
OEIS sequences of smallest Proth primes (k*b^n+1), smallest Riesel primes (k*b^n-1), smallest dual Proth primes (b^n+k), smallest dual Riesel primes (b^n-k):
Code:
k smallest Proth primes (k*b^n+1) smallest Riesel primes (k*b^n-1) smallest dual Proth primes (b^n+k) smallest dual Riesel primes (b^n-k) 2 A119624 A119591 A138066 A255707 b-1 A305531 A?????? A076845 A113516 b+1 A?????? A?????? A346149 A178250 n A240234 A240235 A093324 A084746 Last fiddled with by sweety439 on 2022-05-17 at 19:40 |
![]() |
![]() |
![]() |
#415 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5×13×53 Posts |
![]()
Smallest k such that n*k is palindromic in dozenal (all n and k are written in dozenal)
Next term (n=X1X1) is very large, such number |
![]() |
![]() |
![]() |
#416 | |
If I May
"Chris Halsall"
Sep 2002
Barbados
1053610 Posts |
![]() Quote:
As far as I understand it, pure math is the same no matter what base (let alone dimensions). More than happy to be corrected on that. Programmers usually actually work in base two (even if they don't realize it). |
|
![]() |
![]() |
![]() |
#417 | |
Feb 2017
Nowhere
26·7·13 Posts |
![]() Quote:
is a base twelve palindromic number divisible by n. It may not be the smallest such. Nil sapientiae odiosius obscuritate nimia |
|
![]() |
![]() |
![]() |
#418 | |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
5·13·53 Posts |
![]() Quote:
|
|
![]() |
![]() |