![]() |
![]() |
#1 |
Aug 2010
Kansas
10438 Posts |
![]()
Does anyone know what the largest fully factored Mersenne number is (only counting those with prime exponents, with factors other than one and itsself)?
So far, I've found M7853, which appears to be fully factored... |
![]() |
![]() |
![]() |
#2 |
Undefined
"The unspeakable one"
Jun 2006
My evil lair
2×3,343 Posts |
![]()
Not sure of the largest known but there is:
M9901: 87770464009 . 4512717821471308759.8336998551279784091551 . 1017688752041649660766793 . 25146117302614435382787771401 . 1502440689076527620360606617623599 . P2844 Last fiddled with by retina on 2014-02-22 at 06:15 Reason: spacing |
![]() |
![]() |
![]() |
#3 |
Romulan Interpreter
"name field"
Jun 2011
Thailand
3×23×149 Posts |
![]()
Where "does it appears"?
![]() edit: crosspost, I was talking to the OP Last fiddled with by LaurV on 2014-02-22 at 06:19 |
![]() |
![]() |
![]() |
#4 |
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
5×2,179 Posts |
![]()
Will Edgington has 9733 as being fully factored:
2932747561 * 353435802999708808999 * 4424579967215442704801447 * the cofactor is prime but not listed. And 684127 might be fully factored 23765203727 * the cofactor is at least a pseudo-prime in some base other than 2 Last fiddled with by Uncwilly on 2014-02-22 at 06:16 Reason: 684127 |
![]() |
![]() |
![]() |
#5 |
Romulan Interpreter
"name field"
Jun 2011
Thailand
3×23×149 Posts |
![]()
Searching fdb up to the mersenne prime M23209 (wanted to go to 30k, but it became slow), it appears that M20887 is the highest FF.
edit, meantime it went through, so M26903, M28759, M28771, M29473, are all FF-ed (only expos below 30k tested). Last fiddled with by LaurV on 2014-02-22 at 06:25 Reason: link |
![]() |
![]() |
![]() |
#6 | |
Aug 2010
Kansas
22316 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#7 |
Jun 2003
10101001111102 Posts |
![]() Last fiddled with by axn on 2014-02-22 at 08:33 |
![]() |
![]() |
![]() |
#8 |
Aug 2006
10111011000112 Posts |
![]() |
![]() |
![]() |
![]() |
#9 |
Sep 2003
3·863 Posts |
![]()
In factorDB, selecting "n is prime", "n is odd", "FF Show fully factored numbers", the following numbers appear:
Code:
(smaller exponents omitted) 2^7757-1=233293220467553594643512097574361 2^8849-1=52368383.15264764469472455023 2^9697-1=724126946527.19092282046942032847 2^9733-1=2932747561.353435802999708808999.4424579967215442704801447 2^9901-1=87770464009.4512717821471308759.8336998551279784091551.1017688752041649660766793.25146117302614435382787771401.1502440689076527620360606617623599 2^10007-1=240169.60282169.136255313.10368448917257 2^10169-1=10402314702094700470118039921523041260063 2^10211-1=81689.735193.5108003713569136882634199446306201 2^10433-1=146063.7345550506166399.17578384916225511229570561.407523153578238773059225963827711400649 2^11117-1=60138110048076002069201.5956230361711049200365020316257263269553 2^11813-1=70879.207971134271377 2^12451-1=4980401.15289230353.1143390212315192593598809 2^14561-1=8074991336582835391 2^14621-1=1958650799081.9787919624201558678734079 2^17029-1=418879343 2^17683-1=234000819833373807217.62265855698776681155719328257 2^19121-1=917809.415147656569.1531543915081.27784129616513881634842031 2^20887-1=694257144641.3156563122511.28533972487913.1893804442513836092687 2^26903-1=1113285395642134415541632833178044793 2^28759-1=226160777 2^28771-1=104726441 2^29473-1=5613392570256862943.24876264677503329001 2^32531-1=65063.25225122959 2^35339-1=5776625742089.291148630508887.7028028455954046211351.4153830438466899077960892137 2^41263-1=1402943.983437775590306674647 2^41521-1=2989513.249375127.55803711703045241786952239 2^41681-1=1052945423.16647332713153.2853686272534246492102086015457 2^57131-1=457049.49644668023.359585713337.7535393191738347569 2^58199-1=237604901713907577052391 2^63703-1=42808417 2^82939-1=867140681119.1018662740943783967 2^86137-1=2584111.7747937967916174363624460881 2^86371-1=41681512921035887 2^87691-1=500982892169.1610747697738457 2^106391-1=286105171290931103 2^130439-1=260879 2^136883-1=536581361 2^173867-1=52536637502689 2^221509-1=292391881 2^270059-1=540119.6481417.7124976157756725967 2^271211-1=613961495159 2^271549-1=238749682487 2^406583-1=813167 2^432457-1=1672739247834685086279697 2^440399-1=880799.31518475633.16210820281161978209 2^488441-1=61543567.30051203516986199 Of the numbers discussed in previous messages, M7853 does not appear in the list, but M9901, M9733, and the others do. In addition to the above, the Henri & Renaud link also lists the following as probable primes, which do not appear in factorDB (perhaps factorDB limits its data to n < 500000 ?): Code:
(2^3464473-1)/604874508299177 (2^2327417-1)/23915387348002001 (2^1790743-1)/(146840927*158358984977*3835546416767873*20752172271489035681) (2^1304983-1)/52199321 (2^1168183-1)/54763676838381762583 (2^1010623-1)/12602017578957977 (2^750151-1)/(429934042631*7590093831289*397764574647511*8361437834787151*17383638888678527263) (2^696343-1)/11141489/36009913139329 (2^684127-1)/23765203727 (2^675977-1)/(1686378749257*7171117283326998925471) (2^576551-1)/4612409/64758208321/242584327930759 If you take all the exponents considered by factorDB to be fully factored (including the ones lower than M7757 which were omitted above for brevity), and also include the eleven additional large exponents from Henri & Renaud, then it seems there are only 301 Mersenne numbers that are either fully factored or probably-fully-factored. Can this be correct? |
![]() |
![]() |
![]() |
#10 |
Romulan Interpreter
"name field"
Jun 2011
Thailand
3×23×149 Posts |
![]() |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Mersenne number factored (disbelievers are biting elbows) | alpertron | Data | 597 | 2022-12-12 13:23 |
(M48) NEW MERSENNE PRIME! LARGEST PRIME NUMBER DISCOVERED! | dabaichi | News | 571 | 2020-10-26 11:02 |
Fully factored | mattmill30 | PrimeNet | 23 | 2017-02-13 12:42 |
Exponent fully factored whilst only 74% known | mattmill30 | Factoring | 3 | 2016-08-14 18:09 |
Possibility of a Fully-Factored Number | Trejack | FactorDB | 7 | 2016-05-14 05:38 |