![]() |
![]() |
#177 | |
Apr 2020
3A116 Posts |
![]() Quote:
All done, no more factors. |
|
![]() |
![]() |
![]() |
#178 | |
"Max"
Jun 2016
Toronto
3A116 Posts |
![]() Quote:
Code:
m := [9, 8]; // edit the plot point here a:=rt(m[1]*gen[3]+m[2]*gen[4]); // a1 := -31163499011003626601359716776483379457194762910/15539382401903125112142699946841259192950669329 a1:=a; "a1 =", a1; //" "; // uncomment this to get Y0 and Y1 for the SNFS poly, if necessary a2 :=7*(a1-4)/(2*a1-7); "a2 =", a2; a3 := 14/a1; "a3 =", a3; a4 := 2*(2*a1-7)/(a1-4); "a4 =", a4; " "; Code:
a1 = -31163499011003626601359716776483379457194762910/15539382401903125112142699946841259192950669329 a2 = 653247200330312889349513615946938913602982081582/171102674835329128987718333180855573265044211123 a3 = -108775676813321875784998899627888814350654685303/15581749505501813300679858388241689728597381455 a4 = 171102674835329128987718333180855573265044211123/46660514309308063524965258281924208114498720113 EDIT: effectively the same scores provided by cownoise.com Code:
(9, 8) c158 / snfs188 --> poly 1 n: 65450905747953132329287628843212925588466942908707926747521851453432385566465577084163919043429825490519033179336453712931411833277467544260317417144700707839 # a1 = -31163499011003626601359716776483379457194762910/15539382401903125112142699946841259192950669329 Y0: 31163499011003626601359716776483379457194762910 Y1: 15539382401903125112142699946841259192950669329 # poly x^4 - 6*x^3 + 17*x^2 - 84*x + 196 c0: 1 c1: -6 c2: 17 c3: -84 c4: 196 skew: 3.10892 # E = 1.53716677e-11 <-- best poly --------------------------------------------- (9, 8) c158 / snfs188 --> poly 2 n: 65450905747953132329287628843212925588466942908707926747521851453432385566465577084163919043429825490519033179336453712931411833277467544260317417144700707839 # a2 = 653247200330312889349513615946938913602982081582/171102674835329128987718333180855573265044211123 Y0: -653247200330312889349513615946938913602982081582 Y1: 171102674835329128987718333180855573265044211123 # poly x^4 - 6*x^3 + 17*x^2 - 84*x + 196 c0: 1 c1: -6 c2: 17 c3: -84 c4: 196 skew: 3.76937 # E = 9.51040349e-12 --------------------------------------------- (9, 8) c158 / snfs188 --> poly 3 n: 65450905747953132329287628843212925588466942908707926747521851453432385566465577084163919043429825490519033179336453712931411833277467544260317417144700707839 # a3 = -108775676813321875784998899627888814350654685303/15581749505501813300679858388241689728597381455 Y0: 108775676813321875784998899627888814350654685303 Y1: 15581749505501813300679858388241689728597381455 # poly x^4 - 6*x^3 + 17*x^2 - 84*x + 196 c0: 1 c1: -6 c2: 17 c3: -84 c4: 196 skew: 4.50460 # E = 1.33863784e-11 --------------------------------------------- (9, 8) c158 / snfs188 --> poly 4 n: 65450905747953132329287628843212925588466942908707926747521851453432385566465577084163919043429825490519033179336453712931411833277467544260317417144700707839 # a4 = 171102674835329128987718333180855573265044211123/46660514309308063524965258281924208114498720113 Y0: -171102674835329128987718333180855573265044211123 Y1: 46660514309308063524965258281924208114498720113 # poly x^4 - 6*x^3 + 17*x^2 - 84*x + 196 c0: 1 c1: -6 c2: 17 c3: -84 c4: 196 skew: 3.71423 # E = 1.27390093e-11 Last fiddled with by Max0526 on 2021-06-09 at 20:01 |
|
![]() |
![]() |
![]() |
#179 |
"Max"
Jun 2016
Toronto
92910 Posts |
![]() |
![]() |
![]() |
![]() |
#180 |
"Ben"
Feb 2007
3,733 Posts |
![]()
The small differences I guess are due to the different skews that cownoise comes up with. But the algebraic poly is the same in all cases and therefore (c0 / c4) ^ (1 / 4) should also be the same, which I find to be (196 / 1) ^ (1 / 4) = 3.741. Anyone know how the different skew values are calculated?
|
![]() |
![]() |
![]() |
#181 |
"Curtis"
Feb 2005
Riverside, CA
130108 Posts |
![]() |
![]() |
![]() |
![]() |
#182 | |
"Max"
Jun 2016
Toronto
929 Posts |
![]() Quote:
I just figured out four more possible values for a --> a5-a8. The formulas might be more complicated. I am posting four more polys. Maybe some will be better. EDIT: Four more SNFS polys for a5-a8, the last one is second best in the set of 8. Code:
Hold on, ignore for now, I am still checking them... Last fiddled with by Max0526 on 2021-06-09 at 22:57 |
|
![]() |
![]() |
![]() |
#183 | |
"Max"
Jun 2016
Toronto
929 Posts |
![]() Quote:
Code:
c4: 1 c3: -6 c2: 17 c1: -84 c0: 196 |
|
![]() |
![]() |
![]() |
#184 |
"Ben"
Feb 2007
3,733 Posts |
![]()
Thanks for the new polys... if the methods to generate a5 thru a8 apply in general then I'm interested to see the formulas.
I've started sieving line 105 already, should be done when I wake up tomorrow. Last fiddled with by bsquared on 2021-06-09 at 22:58 |
![]() |
![]() |
![]() |
#185 |
"Rich"
Aug 2002
Benicia, California
24·101 Posts |
![]() |
![]() |
![]() |
![]() |
#186 |
"Ed Hall"
Dec 2009
Adirondack Mtns
2×11×239 Posts |
![]()
Something's not right! Line 143 c124 survived an overzealous amount of ECM and then crashed CADO-NFS GNFS!:
Code:
Info:Linear Algebra: mksol: N=8195 ; ETA (N=9000): Wed Jun 9 09:53:46 2021 [0.022 s/iter] Warning:Command: Process with PID 615364 finished with return code 2 Error:Linear Algebra: Program run on server failed with exit code 2 A question: On the wraithx.net site, do I read the t as the 50-50 point or the top of the knee for the success curve? My three top ECM values for the c217: Code:
7488 @ 43e6 3324 @ 11e6 2350 @ 3e6 Code:
10000 @ 43e6 3324 @ 11e6 2350 @ 3e6 |
![]() |
![]() |
![]() |
#187 |
Jan 2012
Toronto, Canada
1408 Posts |
![]()
I think generally tn means that the collection of curves run has about a 1-1/e (about 63%) chance of finding a factor of n digits if one were to exist, so that would mean the point on the graph where success probability is closest to 63%.
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
factoring 2ⁿ-2 equivalent to factoring 2ⁿ-1(I think) | baih | Miscellaneous Math | 9 | 2020-09-21 07:11 |
OpenCL GPU P-1 Factoring and ECM Factoring | xx005fs | GPU Computing | 3 | 2018-10-27 14:49 |