mersenneforum.org  

Go Back   mersenneforum.org > New To GIMPS? Start Here! > Information & Answers

Reply
 
Thread Tools
Old 2010-09-07, 23:51   #1
Unregistered
 

22·17·73 Posts
Default Twin Prime Question

I'm interested in twins of the form k*2^n+/-1.

One question: What is the probablity that there is a twin of that form with k<1M and n>1M?
  Reply With Quote
Old 2010-09-08, 02:38   #2
Mini-Geek
Account Deleted
 
Mini-Geek's Avatar
 
"Tim Sorbera"
Aug 2006
San Antonio, TX USA

17·251 Posts
Default

Quote:
Originally Posted by Unregistered View Post
One question: What is the probablity that there is a twin of that form with k<1M and n>1M?
Probably: 1 (i.e. it's probably certain that at least one exists...unless I'm mistaken)
It's just quite hard to discover with current technology.
Mini-Geek is offline   Reply With Quote
Old 2010-09-08, 02:59   #3
CRGreathouse
 
CRGreathouse's Avatar
 
Aug 2006

32·659 Posts
Default

Quote:
Originally Posted by Mini-Geek View Post
Probably: 1 (i.e. it's probably certain that at least one exists...unless I'm mistaken)
I don't think that's known. Heuristically, we expect something like
\frac{4000}{\log^22}\sum_{n=10^6}^\infty n^{-2}\approx0.008
examples, right?

Of course the constant factor needs work based on the residue classes 2^n takes on, as well as the factors in k.

Edit:
\approx21503\sum_{n=10^6}^\infty n^{-2}\approx0.021
takes the factors of the k-values into account.

Last fiddled with by CRGreathouse on 2010-09-08 at 03:04 Reason: make approximation clearer
CRGreathouse is offline   Reply With Quote
Old 2010-09-08, 05:04   #4
Unregistered
 

13×467 Posts
Default

Quote:
Originally Posted by CRGreathouse View Post
I don't think that's known. Heuristically, we expect something like
\frac{4000}{\log^22}\sum_{n=10^6}^\infty n^{-2}\approx0.008
examples, right?

Of course the constant factor needs work based on the residue classes 2^n takes on, as well as the factors in k.

Edit:
\approx21503\sum_{n=10^6}^\infty n^{-2}\approx0.021
takes the factors of the k-values into account.
Where do the 21503 (second figure) and 4000 (first figure) numbers come from?
  Reply With Quote
Old 2010-09-08, 13:00   #5
CRGreathouse
 
CRGreathouse's Avatar
 
Aug 2006

32·659 Posts
Default

Quote:
Originally Posted by Unregistered View Post
Where do the 21503 (second figure) and 4000 (first figure) numbers come from?
4000 is about 1000 candidates * 2^2, where the 2 is because only odd numbers are used (which twice as likely to be prime). Oh! You want k < 1000000, not k < 1000; in that case it's 4000000.

The other one is a calculated number based on the factorizations of k < 1000. Let me try for k < 1000000. OK, I get 14756135.8...
Code:
sum(k=2,10^6-1,ff(k+k)^2,0.)/log(2)^2
So the expectations are
Code:
4e6/log(2)^2*(zeta(2)-sum(n=1,10^6,n^-2,0.))
8.32 (naive)

14.75 (including factorizations)

So with this larger range, the heuristic probability is high: with the Poisson model, it's something like 1 - e-14.75 = 99.99996% likely that such a pair of primes exist.
CRGreathouse is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Highest Prime is also a twin prime... NOT hydeer Lone Mersenne Hunters 9 2018-04-03 22:54
Twin Prime tests mathPuzzles Math 10 2017-06-24 08:41
Twin Prime Days, Prime Day Clusters cuBerBruce Puzzles 3 2014-12-01 18:15
Twin prime conjecture work, notation question eepiccolo Math 7 2005-06-04 23:01
twin prime generator 1260 Math 13 2003-10-12 09:48

All times are UTC. The time now is 22:32.

Mon Oct 26 22:32:30 UTC 2020 up 46 days, 19:43, 0 users, load averages: 2.56, 2.17, 1.97

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.