mersenneforum.org  

Go Back   mersenneforum.org > Fun Stuff > Puzzles

Reply
 
Thread Tools
Old 2013-02-12, 16:17   #1
Nick
 
Nick's Avatar
 
Dec 2012
The Netherlands

1,453 Posts
Default Playing with decimal representation

Nothing deep here, just a light-hearted puzzle.
Find the next number (i.e. its first digit) in the following sequence:
5
25
625
0625
90625
890625
2890625
12890625
212890625
8212890625
18212890625
918212890625
...
2166509580863811000557423423230896109004106619977392256259918212890625
and then?

Now do the same for:
6
76
376
...
7833490419136188999442576576769103890995893380022607743740081787109376
Nick is offline   Reply With Quote
Old 2013-02-13, 06:18   #2
LaurV
Romulan Interpreter
 
LaurV's Avatar
 
Jun 2011
Thailand

22×3×739 Posts
Default

[URL="http://oeis.org/A003226"]here is the link[/URL]

Last fiddled with by LaurV on 2013-02-13 at 06:20 Reason: grrr, I did not foresee that the blue color of the link makes the test visible even when you use spoilers...
LaurV is offline   Reply With Quote
Old 2013-02-13, 07:56   #3
Mr. P-1
 
Mr. P-1's Avatar
 
Jun 2003

7·167 Posts
Default

Quote:
Originally Posted by Nick View Post
Nothing deep here, just a light-hearted puzzle.
Find the next number (i.e. its first digit) in the following sequence:
5
25
625
0625
90625
890625
2890625
12890625
212890625
8212890625
18212890625
918212890625
...
2166509580863811000557423423230896109004106619977392256259918212890625
and then?
The last n+1 digits of 5^(2^n) starting with n=0

Now do the same for:
6
76
376

...
7833490419136188999442576576769103890995893380022607743740081787109376[/QUOTE]

The last n+1 digits of 376^(2^n) starting with n=0
Mr. P-1 is offline   Reply With Quote
Old 2013-02-13, 08:08   #4
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

22·2,281 Posts
Default

There was a nice problem on projecteuler relevant to this thread.
Batalov is offline   Reply With Quote
Old 2013-02-13, 08:52   #5
LaurV
Romulan Interpreter
 
LaurV's Avatar
 
Jun 2011
Thailand

22·3·739 Posts
Default

ok, got a bit of free time during lunch break:

[edit: scroll down, till the red texts]
[edit 2: all the "log" stuff is no needed, it is just to display the number of digits, I was lazy to use counters]

Code:
gp > n=5; log10=log(10); s=1; while(n<10^100, if(n^2%10^(cntdig=log(n)\log10+1)==n, print(cntdig": "n); s=10^cntdig); n+=s)
1: 5
2: 25
3: 625
5: 90625
6: 890625
7: 2890625
8: 12890625
9: 212890625
10: 8212890625
11: 18212890625
12: 918212890625
13: 9918212890625
14: 59918212890625
15: 259918212890625
16: 6259918212890625
17: 56259918212890625
18: 256259918212890625
19: 2256259918212890625
20: 92256259918212890625
21: 392256259918212890625
22: 7392256259918212890625
23: 77392256259918212890625
24: 977392256259918212890625
25: 9977392256259918212890625
26: 19977392256259918212890625
27: 619977392256259918212890625
28: 6619977392256259918212890625
30: 106619977392256259918212890625
31: 4106619977392256259918212890625
34: 9004106619977392256259918212890625
36: 109004106619977392256259918212890625
37: 6109004106619977392256259918212890625
38: 96109004106619977392256259918212890625
39: 896109004106619977392256259918212890625
41: 30896109004106619977392256259918212890625
42: 230896109004106619977392256259918212890625
43: 3230896109004106619977392256259918212890625
44: 23230896109004106619977392256259918212890625
45: 423230896109004106619977392256259918212890625
46: 3423230896109004106619977392256259918212890625
47: 23423230896109004106619977392256259918212890625
48: 423423230896109004106619977392256259918212890625
49: 7423423230896109004106619977392256259918212890625
50: 57423423230896109004106619977392256259918212890625
51: 557423423230896109004106619977392256259918212890625
55: 1000557423423230896109004106619977392256259918212890625
56: 11000557423423230896109004106619977392256259918212890625
57: 811000557423423230896109004106619977392256259918212890625
58: 3811000557423423230896109004106619977392256259918212890625
59: 63811000557423423230896109004106619977392256259918212890625
60: 863811000557423423230896109004106619977392256259918212890625
62: 80863811000557423423230896109004106619977392256259918212890625
63: 580863811000557423423230896109004106619977392256259918212890625
64: 9580863811000557423423230896109004106619977392256259918212890625
66: 509580863811000557423423230896109004106619977392256259918212890625
67: 6509580863811000557423423230896109004106619977392256259918212890625
68: 66509580863811000557423423230896109004106619977392256259918212890625
69: 166509580863811000557423423230896109004106619977392256259918212890625
70: 2166509580863811000557423423230896109004106619977392256259918212890625
71: 62166509580863811000557423423230896109004106619977392256259918212890625
74: 90062166509580863811000557423423230896109004106619977392256259918212890625
75: 890062166509580863811000557423423230896109004106619977392256259918212890625
76: 9890062166509580863811000557423423230896109004106619977392256259918212890625
78: 509890062166509580863811000557423423230896109004106619977392256259918212890625
79: 8509890062166509580863811000557423423230896109004106619977392256259918212890625
80: 38509890062166509580863811000557423423230896109004106619977392256259918212890625
81: 938509890062166509580863811000557423423230896109004106619977392256259918212890625
82: 2938509890062166509580863811000557423423230896109004106619977392256259918212890625
84: 802938509890062166509580863811000557423423230896109004106619977392256259918212890625
85: 9802938509890062166509580863811000557423423230896109004106619977392256259918212890625
86: 69802938509890062166509580863811000557423423230896109004106619977392256259918212890625
87: 169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
88: 8169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
90: 108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
91: 9108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
92: 19108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
93: 319108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
94: 7319108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
97: 3007319108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
98: 53007319108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
99: 953007319108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
100: 3953007319108169802938509890062166509580863811000557423423230896109004106619977392256259918212890625
gp > ##
  ***   last result computed in 32 ms.
gp > n=6; log10=log(10); s=1; while(n<10^100, if(n^2%10^(cntdig=log(n)\log10+1)==n, print(cntdig": "n); s=10^cntdig); n+=s)
1: 6
2: 76
3: 376
4: 9376
6: 109376
7: 7109376
8: 87109376
9: 787109376
10: 1787109376
11: 81787109376
14: 40081787109376
15: 740081787109376
16: 3740081787109376
17: 43740081787109376
18: 743740081787109376
19: 7743740081787109376
21: 607743740081787109376
22: 2607743740081787109376
23: 22607743740081787109376
26: 80022607743740081787109376
27: 380022607743740081787109376
28: 3380022607743740081787109376
29: 93380022607743740081787109376
30: 893380022607743740081787109376
31: 5893380022607743740081787109376
32: 95893380022607743740081787109376
33: 995893380022607743740081787109376
35: 90995893380022607743740081787109376
36: 890995893380022607743740081787109376
37: 3890995893380022607743740081787109376
39: 103890995893380022607743740081787109376
40: 9103890995893380022607743740081787109376
41: 69103890995893380022607743740081787109376
42: 769103890995893380022607743740081787109376
43: 6769103890995893380022607743740081787109376
44: 76769103890995893380022607743740081787109376
45: 576769103890995893380022607743740081787109376
46: 6576769103890995893380022607743740081787109376
47: 76576769103890995893380022607743740081787109376
48: 576576769103890995893380022607743740081787109376
49: 2576576769103890995893380022607743740081787109376
50: 42576576769103890995893380022607743740081787109376
51: 442576576769103890995893380022607743740081787109376
52: 9442576576769103890995893380022607743740081787109376
53: 99442576576769103890995893380022607743740081787109376
54: 999442576576769103890995893380022607743740081787109376
55: 8999442576576769103890995893380022607743740081787109376
56: 88999442576576769103890995893380022607743740081787109376
57: 188999442576576769103890995893380022607743740081787109376
58: 6188999442576576769103890995893380022607743740081787109376
59: 36188999442576576769103890995893380022607743740081787109376
60: 136188999442576576769103890995893380022607743740081787109376
61: 9136188999442576576769103890995893380022607743740081787109376
62: 19136188999442576576769103890995893380022607743740081787109376
63: 419136188999442576576769103890995893380022607743740081787109376
65: 90419136188999442576576769103890995893380022607743740081787109376
66: 490419136188999442576576769103890995893380022607743740081787109376
67: 3490419136188999442576576769103890995893380022607743740081787109376
68: 33490419136188999442576576769103890995893380022607743740081787109376
69: 833490419136188999442576576769103890995893380022607743740081787109376
70: 7833490419136188999442576576769103890995893380022607743740081787109376
71: 37833490419136188999442576576769103890995893380022607743740081787109376
72: 937833490419136188999442576576769103890995893380022607743740081787109376
73: 9937833490419136188999442576576769103890995893380022607743740081787109376
75: 109937833490419136188999442576576769103890995893380022607743740081787109376
77: 90109937833490419136188999442576576769103890995893380022607743740081787109376
78: 490109937833490419136188999442576576769103890995893380022607743740081787109376
79: 1490109937833490419136188999442576576769103890995893380022607743740081787109376
80: 61490109937833490419136188999442576576769103890995893380022607743740081787109376
82: 7061490109937833490419136188999442576576769103890995893380022607743740081787109376
83: 97061490109937833490419136188999442576576769103890995893380022607743740081787109376
84: 197061490109937833490419136188999442576576769103890995893380022607743740081787109376
86: 30197061490109937833490419136188999442576576769103890995893380022607743740081787109376
87: 830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
88: 1830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
89: 91830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
90: 891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
92: 80891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
93: 680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
94: 2680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
95: 92680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
96: 992680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
97: 6992680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
98: 46992680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
100: 6046992680891830197061490109937833490419136188999442576576769103890995893380022607743740081787109376
gp > ##
  ***   last result computed in 31 ms.
gp >

Last fiddled with by LaurV on 2013-02-13 at 09:01
LaurV is offline   Reply With Quote
Old 2013-02-13, 15:45   #6
Raman
Noodles
 
Raman's Avatar
 
"Mr. Tuch"
Dec 2007
Chennai, India

3·419 Posts
Default

Okay. Enough is enough. These patterns are being quite popular enough.

Now, that if in case someone has got with enough strength, then he could be able to be
guessing into with these patterns.

What patterns? - guess please!

(1) (a)
3
53
753
0753
60753
660753
...

(b)
7
77
477
6477
46477
446477
...

(c)
1
71
471
8471
88471
288471
...

Hint: See what their own cubes end with!


(2) (a)
...761...
...2761...
...32761...
...932761...
...3932761...

(b)
...6403...
...56403...
...756403...
...7756403...

(c)
...23...
...223...
...4223...
...34223...
...534223...
...7534223...

Hint: Look at the last digits of 3[sup]5×10[sup]n+1[/sup][/sup],
7[sup]5×10[sup]n+1[/sup][/sup], 11[sup]5×10[sup]n+1[/sup][/sup].
Raman is offline   Reply With Quote
Old 2013-02-13, 16:24   #7
fivemack
(loop (#_fork))
 
fivemack's Avatar
 
Feb 2006
Cambridge, England

11000101100102 Posts
Default

10-adic (to the extent that that makes sense) solutions to u^2=u

(they sum to 1, because u^2=u => (1-u)^2 = 1-2u+u^2 = 1-u )
fivemack is offline   Reply With Quote
Old 2013-02-13, 16:39   #8
fivemack
(loop (#_fork))
 
fivemack's Avatar
 
Feb 2006
Cambridge, England

11000101100102 Posts
Default

50087895134587 ...

(ah yes, the two initial ones are 0-mod-2 1-mod-5 and 0-mod-5 1-mod-2)

This is about the point where my PhD ran into the sands; these things are near enough to reals that you can contemplate integrating over them, but at that point my brain stopped.
fivemack is offline   Reply With Quote
Old 2013-02-13, 16:45   #9
Raman
Noodles
 
Raman's Avatar
 
"Mr. Tuch"
Dec 2007
Chennai, India

100111010012 Posts
Default

Quote:
Originally Posted by fivemack View Post
50087895134587 ...

(ah yes, the two initial ones are 0-mod-2 1-mod-5 and 0-mod-5 1-mod-2)

This is about the point where my PhD ran into the sands; these things are near enough to reals that you can contemplate integrating over them, but at that point my brain stopped.
x1 = 7
x2 = 87
x3 = 587
x4 = 4587
x5 = 34587
x6 = 134587
x7 = 5134587
x8 = 95134587
x9 = 895134587
x10 = 7895134587
x11 = 87895134587
x12 = 087895134587
x13 = 0087895134587
x14 = 50087895134587

x[SUB]n[/SUB][SUP]3[/SUP] mod 10[SUP]n[/SUP] = 3

Last fiddled with by Raman on 2013-02-13 at 16:46
Raman is offline   Reply With Quote
Old 2013-02-13, 17:17   #10
Nick
 
Nick's Avatar
 
Dec 2012
The Netherlands

1,453 Posts
Default

Wow, thanks for all the responses to the first puzzle, both answers and links.

Mathematically, the pattern arises because we use decimal notation and there are 2 distinct primes dividing 10 (it wouldn't work in hexadecimal, for example).
For any positive integer n the Chinese Remainder Theorem tells us that \mathbb{Z}/10^n\mathbb{Z} is isomorphic to \mathbb{Z}/5^n\mathbb{Z}\times\mathbb{Z}/2^n\mathbb{Z}.

As fivemack pointed out, it follows that in the integers modulo 10ⁿ there are 4 idempotent elements (numbers equal to their own square), not just 0 and 1 (corresponding with the pairs (0,0) and (1,1)) but also the numbers corresponding with (1,0) and (0,1) via the isomorphism above.
Thus, for example, 625 is the unique integer modulo 1000 which is congruent to 0 mod 125 and 1 mod 8, while 376 is the unique integer modulo 1000 which is congruent to 1 mod 125 and 0 mod 8. And their sum 625+376 is congruent to 1 mod 1000 because (again as fivemack noted) if e is idempotent then so is 1-e.

Last fiddled with by Nick on 2013-02-13 at 17:19
Nick is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
very long binary representation to decimal davar55 Programming 24 2014-12-07 00:19
Representation by quadratic forms Raman Math 0 2013-01-04 00:29
2-d binary representation only_human Miscellaneous Math 9 2009-02-23 00:11
Representation of integer as sum of squares kpatsak Math 4 2007-10-29 17:53
playing with numbers michael Puzzles 14 2004-01-17 00:15

All times are UTC. The time now is 02:07.

Sun Oct 25 02:07:14 UTC 2020 up 44 days, 23:18, 0 users, load averages: 1.50, 1.60, 1.69

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.