20091110, 02:18  #1 
Aug 2004
Melbourne, Australia
2^{3}×19 Posts 
Counting Latin rectangles
Hi folks,
As some may know already, I'm about to complete my thesis on the enumeration of Latin rectangles. Here's a link discussing some of my work. Currently I'm thinking about future projects after I submit (in a few weeks). One such idea is extending the tables of R(k,n) (counting k x n reduced Latin rectangles) for small k. Specifically, I have in mind conjecture about divisors of these numbers and more data for R(5,n) would support (or, if I'm wrong, not support) this conjecture. I've written c code and uploaded it here. It implements Doyle's formula in the cases R(4,n), R(5,n) and R(6,n), which I have used to find previously unknown values of these numbers. It's not very optimised and I'm wondering if anyone here would be able and willing to help out. It uses GMP, which I'm told is pretty slow. It doesn't use anything too fancy, eg. multiplication, division, factorials. Since I'm only interested in primepower divisors of these numbers, it might be possible to only run this code modulo 2^N and then again for 3^N, hopefully eliminating the need for GMP (although I'd prefer to know the numbers exactly if possible). Anyway, I'm just looking for expressions of interest and an idea of what's possible at the moment... I know there's a lot of people here with expertise in coding. 
20091110, 06:22  #2 
"Kyle"
Feb 2005
Somewhere near M50..sshh!
37E_{16} Posts 
Well, I don't know anything about coding, nor about your topic of expertise. However, I would like to congratulate you in advance for completing your dissertation and doctorate!

20091112, 07:29  #3 
Aug 2004
Melbourne, Australia
2^{3}·19 Posts 
Thanks (:. They say the thesis will be available online, so I can post a link.
Well not much of a race to respond... I'm not sure if it's because it's quite offtopic for this forum. The code, however, should be able to be improved without knowledge of Latin rectangles. Perhaps I'll try to explain how it works a bit better. I'm mostly interested in R(5,n) since for R(4,n) I have lots of data already and R(6,n) seems too hard. Overall, it's a sum over "partitions" of n=A[0]+A[1]+...+A[15] (where the A[i] can take the values of 0...n). For each partition of n the variable "internal" is added to "count." Code:
#include <stdio.h> #include <gmp.h> #include <time.h> int n,x,y; time_t start_time; mpz_t count,internal,temp; int A[16],B[16]; int DoyleF5_1(int A[16]) { return A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8]; } int DoyleF5_12(int A[16]) { return A[1]+A[2]+A[3]+A[4]; } int DoyleF5_123(int A[16]) { return A[1]+A[2]; } int DoyleF5_1234(int A[16]) { return A[1]; } int DoyleF5_124(int A[16]) { return A[1]+A[3]; } int DoyleF5_13(int A[16]) { return A[1]+A[2]+A[5]+A[6]; } int DoyleF5_134(int A[16]) { return A[1]+A[5]; } int DoyleF5_14(int A[16]) { return A[1]+A[3]+A[5]+A[7]; } int DoyleF5_2(int A[16]) { return A[1]+A[2]+A[3]+A[4]+A[9]+A[10]+A[11]+A[12]; } int DoyleF5_23(int A[16]) { return A[1]+A[2]+A[9]+A[10]; } int DoyleF5_234(int A[16]) { return A[1]+A[9]; } int DoyleF5_24(int A[16]) { return A[1]+A[3]+A[9]+A[11]; } int DoyleF5_3(int A[16]) { return A[1]+A[2]+A[5]+A[6]+A[9]+A[10]+A[13]+A[14]; } int DoyleF5_34(int A[16]) { return A[1]+A[5]+A[9]+A[13]; } int DoyleF5_4(int A[16]) { return A[1]+A[3]+A[5]+A[7]+A[9]+A[11]+A[13]+A[15]; } Code:
int DoyleG5(int A[16]) { return DoyleF5_1(A)*DoyleF5_2(A)*DoyleF5_3(A)*DoyleF5_4(A)DoyleF5_1(A)*DoyleF5_2(A)*DoyleF5_34(A)DoyleF5_1(A)*DoyleF5_23(A)*DoyleF5_4(A)+2*DoyleF5_1(A)*DoyleF5_234(A)DoyleF5_1(A)*DoyleF5_24(A)*DoyleF5_3(A)DoyleF5_12(A)*DoyleF5_3(A)*DoyleF5_4(A)+DoyleF5_12(A)*DoyleF5_34(A)+2*DoyleF5_123(A)*DoyleF5_4(A)6*DoyleF5_1234(A)+2*DoyleF5_124(A)*DoyleF5_3(A)DoyleF5_13(A)*DoyleF5_2(A)*DoyleF5_4(A)+DoyleF5_13(A)*DoyleF5_24(A)+2*DoyleF5_134(A)*DoyleF5_2(A)DoyleF5_14(A)*DoyleF5_2(A)*DoyleF5_3(A)+DoyleF5_14(A)*DoyleF5_23(A); } Code:
int MinusOneOrNot(int A[16]) { if((A[2]+A[3]+A[5]+A[8]+A[9]+A[12]+A[14]+A[15])%2==0) { return 1; } else { return 1; } } Code:
start_time=time(NULL); mpz_init(count); mpz_init(temp); mpz_init(internal); for(n=20;n<=100;n++) { mpz_set_si(count,0); Code:
for(A[1]=0;A[1]<=n;A[1]++) { for(A[2]=0;A[2]<=nA[1];A[2]++) { for(A[3]=0;A[3]<=nA[1]A[2];A[3]++) { for(A[4]=0;A[4]<=nA[1]A[2]A[3];A[4]++) { for(A[5]=0;A[5]<=nA[1]A[2]A[3]A[4];A[5]++) { for(A[6]=0;A[6]<=nA[1]A[2]A[3]A[4]A[5];A[6]++) { for(A[7]=0;A[7]<=nA[1]A[2]A[3]A[4]A[5]A[6];A[7]++) { for(A[8]=0;A[8]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7];A[8]++) { for(A[9]=0;A[9]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8];A[9]++) { for(A[10]=0;A[10]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9];A[10]++) { for(A[11]=0;A[11]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9]A[10];A[11]++) { for(A[12]=0;A[12]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9]A[10]A[11];A[12]++) { for(A[13]=0;A[13]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9]A[10]A[11]A[12];A[13]++) { for(A[14]=0;A[14]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9]A[10]A[11]A[12]A[13];A[14]++) { for(A[15]=0;A[15]<=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9]A[10]A[11]A[12]A[13]A[14];A[15]++) { A[0]=nA[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8]A[9]A[10]A[11]A[12]A[13]A[14]A[15]; Code:
mpz_fac_ui(internal,n); for(x=0;x<=15;x++) { mpz_fac_ui(temp,A[x]); mpz_div(internal,internal,temp); } mpz_mul_si(internal,internal,MinusOneOrNot(A)); Code:
for(x=0;x<=15;x++) { for(y=0;y<=15;y++) { B[y]=A[y]; } B[x]; mpz_set_si(temp,0); mpz_set_si(temp,DoyleG5(B)); mpz_pow_ui(temp,temp,A[x]); mpz_mul(internal,internal,temp); } Code:
} mpz_add(count,count,internal); } } } } } } } } } } } } } } } if(n>=5) { mpz_div_ui(count,count,(n1)*(n2)*(n3)*(n4)); } gmp_printf("R(5,%d)=%Zd %ld sec.\n",n,count,time(NULL)start_time); } } Hope this helps. But if there's anything I could explain more clearly, I'm happy to. 
20100216, 10:20  #4 
Aug 2004
Melbourne, Australia
2^{3}·19 Posts 
I'm surprised how little interest there is in this... ah well. Anyway, my thesis has now been accepted so I will have my Ph.D. soon (after some admin hurdles). I uploaded the thesis to this website.

Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Counting ECM work twice  alpertron  PrimeNet  1  20091201 23:33 
Counting duplicates  fivemack  Factoring  1  20090824 02:26 
Does anyone know latin well?  crash893  Lounge  3  20080423 23:17 
Prime squares/rectangles  roger  Puzzles  10  20070504 16:07 
counting bricks  michael  Puzzles  8  20040114 16:27 