![]() |
![]() |
#397 |
Jun 2003
484210 Posts |
![]() Code:
2^185027+1 = 1083777842499641953 2^185027+1 = 89787141833932019 2^185057+1 = 282852866698072157681 2^185077+1 = 16919021276013747377 2^185089+1 = 10900699594074604881521953 2^185089+1 = 221798932094409327898715443 2^185123+1 = 249091823540792164193 2^185131+1 = 614631266097437401961 2^185149+1 = 4632054652645851487481 2^185177+1 = 11070289464064123567067 2^185183+1 = 410204248236457001 2^185299+1 = 2726123297546983707881 2^185303+1 = 22030523950409842310815772731 2^185327+1 = 7004644768153282098139 2^185401+1 = 1377284104461902171 2^185401+1 = 44710542352174493027 2^185467+1 = 1570156116294456363238817 2^185467+1 = 55425949518507998201 2^185467+1 = 93286571979743003 2^185477+1 = 623200626015451653236731 2^185483+1 = 170624566503653489 2^185491+1 = 3055170002964841297 2^185519+1 = 226859023207751855611 2^185531+1 = 531996034759495139 2^185539+1 = 929386990693006986364331 2^185567+1 = 932751605797981486313 2^185599+1 = 592285553429279239544919787 2^185599+1 = 854933907480021563 2^185651+1 = 74158574248997652097 2^185683+1 = 697848717937007996393 2^185693+1 = 27819970850774446813219 2^185723+1 = 21118986264580414108696409 2^185749+1 = 90798595301225353 2^185869+1 = 37595098481095045921 2^185873+1 = 824616873826472953 2^185947+1 = 885397338194474559611 2^185959+1 = 460160292352421660563 2^185987+1 = 2089486125043693379 |
![]() |
![]() |
#398 |
Jun 2003
2·32·269 Posts |
![]() Code:
2^186013+1 = 15748083763136456177209 2^186023+1 = 2957528297971240769 2^186023+1 = 3402564142067436324961 2^186103+1 = 19771015720037170163 2^186113+1 = 1264254694532649649 2^186113+1 = 1749334182278066622401 2^186163+1 = 222616039509644431342387 2^186187+1 = 13199271202969862921 2^186187+1 = 20019988696652894179 2^186191+1 = 1897101472028076329457131 2^186191+1 = 990277752466980673 2^186211+1 = 122192835705630923 2^186227+1 = 274495111056860933347 2^186239+1 = 50813940129478179431655089 2^186247+1 = 226624428159729731 2^186253+1 = 56961240657650945537 2^186283+1 = 6672183213705107046161 2^186317+1 = 2045450087818948099 2^186317+1 = 80982142529700619 2^186377+1 = 34268714308628897914763 2^186379+1 = 11612837880807314003843 2^186391+1 = 56563876014079737097 2^186419+1 = 28027979928983244920209 2^186419+1 = 494957124478775099 2^186481+1 = 1751994290017631250661457 2^186583+1 = 1184388217657709619005419 2^186601+1 = 461028278059086467 2^186629+1 = 1797521859941530207393 2^186647+1 = 11631782649413914674204313 2^186647+1 = 226623519555038339113 2^186647+1 = 511832426132525161157602049 2^186649+1 = 1964131017769064219 2^186653+1 = 1147521675240936169758979 2^186701+1 = 607703715843134609 2^186709+1 = 5700471557565950178953 2^186733+1 = 3453877838390317145322721 2^186757+1 = 7302570709281500527673 2^186859+1 = 92018509516509165049 2^186917+1 = 887039887286310624322434971 2^186947+1 = 4763529256011569539681 |
![]() |
![]() |
#399 |
Nov 2016
22·691 Posts |
![]()
Can you give a list for factorization for Phi(n,2), like this factorization for Phi(n,2) for n<=1280, but for larger n, or the base 2 analog of https://stdkmd.net/nrr/repunit/Phin10.txt?
|
![]() |
![]() |
#400 |
Feb 2017
Nowhere
32×463 Posts |
![]()
The Main tables for the Cunningham Project give all that is known as of October 13, 2020 for 2^n - 1 and 2^n + 1, odd n < 1300; 2^n + 1, n = 4k-2, n < 2600; and 2^n + 1, n = 4k, n <= 1300.
I'm not sure about what's known for n > 1300, apart from factors found for specific reasons, as in this thread. |
![]() |
![]() |
#401 |
Jun 2003
10010111010102 Posts |
![]()
All known factors should be available in factordb.
|
![]() |
![]() |
#402 |
Jun 2003
2×32×269 Posts |
![]() Code:
2^187027+1 = 93280062041601923 2^187067+1 = 167657338910185123 2^187073+1 = 1773547043131252961179 2^187091+1 = 7490974414010726201 2^187111+1 = 12085454218928510429154251 2^187123+1 = 15237076331343916532363 2^187129+1 = 13054812070733883811 2^187141+1 = 2767727424596022073 2^187277+1 = 16648130154426565870451 2^187367+1 = 2851213614560745669761 2^187393+1 = 4325900451522429451666409 2^187409+1 = 23682536026839095233 2^187441+1 = 356811465049602822379 2^187507+1 = 136182070752022075763 2^187531+1 = 234824523235406579 2^187547+1 = 21734337743760654848729 2^187559+1 = 119141644147537859 2^187597+1 = 328082017140957356779 2^187631+1 = 135257665033256813773319179 2^187651+1 = 118958604171619114907 2^187699+1 = 16754593966508176403 2^187763+1 = 1594694862869556281 2^187823+1 = 315252188853125984642449 2^187823+1 = 353873670894420161 2^187843+1 = 1611721668010771099 2^187861+1 = 138185409779245238777 2^187927+1 = 1123741668557525881 2^187931+1 = 4158259200700500195538209227 2^187951+1 = 423208240806304897 2^187963+1 = 3539214169878534957289 2^187963+1 = 386995130744702202497 2^187963+1 = 749025383074373851 2^187973+1 = 79294752365737873 |
![]() |
![]() |
#403 |
Jun 2003
2·32·269 Posts |
![]() Code:
2^188107+1 = 653775933513408919963 2^188159+1 = 246535478649675829249 2^188197+1 = 3126305333546483489 2^188261+1 = 78508796621992867771 2^188281+1 = 1339468462911942839796641 2^188291+1 = 316432399448701708057 2^188299+1 = 1449215641848983990873 2^188317+1 = 20255826347594739689 2^188323+1 = 13626867339374301014939 2^188389+1 = 1152245956325215859 2^188389+1 = 1423100990824458577 2^188431+1 = 383433379800251747318593 2^188437+1 = 452845870835898197731 2^188443+1 = 60139930851023701311451 2^188491+1 = 38929236513778615057 2^188491+1 = 549676633329942342276889 2^188527+1 = 756255254682346708297 2^188533+1 = 2659395280293844144571 2^188563+1 = 8292813314933361016417 2^188579+1 = 688881947613892821953 2^188677+1 = 1489516446916178953 2^188681+1 = 1221572281895537235162823811 2^188687+1 = 717281332499277471659 2^188687+1 = 816834003221119411531305189827 2^188701+1 = 26101615273658551387 2^188701+1 = 62596401317613830263217412139 2^188707+1 = 2492133954971603804033 2^188711+1 = 3624492595018154981772401 2^188779+1 = 31065038697319181537 2^188827+1 = 174513165543868729 2^188827+1 = 20013002096740787411 2^188831+1 = 13097121949498115833 2^188831+1 = 1828434873324785953 2^188831+1 = 6649806620616851281361 2^188833+1 = 1212315784226053540849 2^188843+1 = 123330837316977943362011 2^188869+1 = 217359754451105353313 2^188869+1 = 755425547490511889 2^188911+1 = 27325390561826338337 2^188911+1 = 6229945467543243091 2^188933+1 = 270142109645531707 2^188933+1 = 3972925038423008816779 2^188939+1 = 314063757512756512344619 2^188941+1 = 141027751669759132883 2^188953+1 = 4024513545065700361 2^188983+1 = 32607615694265360899 2^188999+1 = 278952816848830355483639081 2^188999+1 = 31028514562606473370097 |
![]() |
![]() |
#404 |
Jun 2003
113528 Posts |
![]() Code:
2^189011+1 = 2507085911135037069449033 2^189017+1 = 91509819679994113 2^189067+1 = 518379693187305883 2^189127+1 = 172362306382997453347 2^189127+1 = 235186328400822452963 2^189139+1 = 564699739349407470019 2^189239+1 = 18700318729635760587899 2^189253+1 = 814719423304107641 2^189257+1 = 42236768932837975600331 2^189347+1 = 2207587847359101209 2^189361+1 = 256035024256050635747 2^189361+1 = 475342587776255066279011 2^189377+1 = 63331044268486688347427 2^189389+1 = 8601556032018421763 2^189421+1 = 115060887756225619193 2^189437+1 = 75899758083816027655793633 2^189473+1 = 195257878771001947273 2^189491+1 = 319477165871282342449 2^189517+1 = 161470381016653649 2^189529+1 = 1345938364415133107 2^189529+1 = 16159541445823648294547 2^189547+1 = 86651282271389107 2^189583+1 = 41442341065252218871602763 2^189583+1 = 50582790450651796147 2^189583+1 = 6611324380294792241 2^189643+1 = 110550538577484863227 2^189671+1 = 2114152432906445401129534601 2^189691+1 = 258188420009499086003536513 2^189701+1 = 2441840025800070251 2^189767+1 = 2600436807019268827 2^189799+1 = 452281133650851883747 2^189817+1 = 21903853750525520843 2^189851+1 = 1008165824700201179 2^189851+1 = 90605075601528767513737 2^189949+1 = 93046626903765627794041 2^189967+1 = 84913293937093744875721 |
![]() |
![]() |
#405 |
Nov 2016
276410 Posts |
![]()
Have all exponents <= 13372531 (the largest known Wagstaff exponent, found in 2013) been tested?
|
![]() |
![]() |
#406 |
Sep 2002
Database er0rr
1101110010112 Posts |
![]() |
![]() |
![]() |
#407 |
Jun 2003
2×32×269 Posts |
![]() Code:
2^190031+1 = 48077710933058669722529 2^190093+1 = 55135981143431058671257 2^190121+1 = 38477336342052106777 2^190147+1 = 7832399627127774994007131 2^190271+1 = 96566573425033830294859 2^190297+1 = 74368920726189611 2^190301+1 = 173366336948763307 2^190321+1 = 93677236942153794073 2^190537+1 = 4439215131533896825193 2^190543+1 = 288142184650394248123 2^190543+1 = 5901989372124472593064363 2^190573+1 = 9453550385425692517739 2^190583+1 = 1638182801273110454304073 2^190633+1 = 1124811022503483353 2^190633+1 = 94536947316200563 2^190667+1 = 1887551580498981451 2^190667+1 = 554561060381422935481 2^190711+1 = 7270624885258188731 2^190807+1 = 1789398360174779668481 2^190811+1 = 96798035688331655203 2^190843+1 = 32984909840919336035804449 2^190843+1 = 362659467865533744368059 2^190871+1 = 24789912272846936441 2^190913+1 = 6449646901771763228449 2^190997+1 = 153084291836130139 |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Testing Mersenne Primes with Elliptic Curves | a nicol | Math | 3 | 2017-11-15 20:23 |
New Wagstaff PRP exponents | ryanp | Wagstaff PRP Search | 26 | 2013-10-18 01:33 |
Hot tuna! -- a p75 and a p79 by Sam Wagstaff! | Batalov | GMP-ECM | 9 | 2012-08-24 10:26 |
Statistical odds for prime in Wagstaff vs Mersenne | diep | Math | 27 | 2010-01-13 20:18 |
Speed of P-1 testing vs. Trial Factoring testing | eepiccolo | Math | 6 | 2006-03-28 20:53 |